On the regular elements of rings in which the product of any two zero divisions lies in the galois subring

dc.contributor.authorOduor, Owino M
dc.contributor.authorLibendi, Omamo A
dc.contributor.authorMusoga, Christopher
dc.date.accessioned2021-09-27T09:18:56Z
dc.date.available2021-09-27T09:18:56Z
dc.date.issued2013-01-28
dc.descriptionResearch on International Journal of Pure and Applied Mathematicsen_US
dc.description.abstractSuppose R is a completely primary finite ring in which the product of any two zero divisors lies in the Galois (coefficient) subring. We construct R and find a generalized characterization of its regular elements.en_US
dc.description.sponsorshipDAADen_US
dc.identifier.citationOduor, O. M., Libendi, O. A., & Christopher, M. (2013). ON THE REGULAR ELEMENTS OF RINGS IN WHICH THE PRODUCT OF ANY TWO ZERO DIVISORS LIES IN THE GALOIS SUBRING. International Journal of Pure and Applied Mathematics, 86(2), 333-344.en_US
dc.identifier.issnISSN: 1314-3395
dc.identifier.uriurl: www.acadpubl.eu
dc.identifier.urihttp://ir-library.kabianga.ac.ke/handle/123456789/190
dc.language.isoenen_US
dc.publisherInternational Journal of Pure and Applied Mathematicsen_US
dc.subjectunit groupsen_US
dc.subjectcompletely primary finite ringsen_US
dc.titleOn the regular elements of rings in which the product of any two zero divisions lies in the galois subringen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The Regular Elements of Rings.pdf
Size:
154.02 KB
Format:
Adobe Portable Document Format
Description:
Full article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: