Numerical Solution of the Navier-Stokes Equations for Incompressible Fluid Flow by Crank-Nicolson Implicit Scheme

dc.contributor.authorSiele, Charles
dc.contributor.authorRotich, John
dc.contributor.authorAdicka, Daniel
dc.date.accessioned2024-10-03T07:07:21Z
dc.date.available2024-10-03T07:07:21Z
dc.date.issued2021-03-12
dc.descriptionArticle Journal on Numerical Solution of the Navier-Stokes Equations for Incompressible Fluid Flow by Crank-Nicolson Implicit Schemeen_US
dc.description.abstractThe Navier-Stokes (N-S) equations for incompressible fluid flow comprise of a system of four nonlinear equations with five flow fields such as pressure P, density ρ and three velocity components u, v, and w. The system of equations is generally complex due to the fact that it is nonlinear and a mixture of the three classes of partial differential equations (PDEs) each with distinct solution methods. The N-S equations fully describe the unsteady fluid flow behaviour of laminar and turbulent types. Previous studies have shown existence of general solutions of fluid flow models but little has been done on numerical solution for velocity of flow in N-S equation of incompressible fluid flow by Crank-Nicolson implicit scheme. In practice, real fluid flows are compressible due to the inevitable variations in density caused by temperature changes and other physical factors. Numerical approximations of the general system of Navier-Stokes equations were made to develop numerical solution model for incompressible fluid flow. Adequate solutions of the latter produce numerical solutions applicable in numerical simulation of fluid flows useful in engineering and science. Non-dimensionalization of variables involved was done. Crank-Nicolson (C.N) implicit scheme was implemented to discretize partial derivatives and appropriate approximation made at the boundaries yielded a linear system of N-S equations model. The linear numerical system was then expressed in matrix form for computation of velocity field by Computational fluid dynamics (CFD) approach using MATLAB software. Numerical results for velocity field in two dimensional space, u(x,y,t) and v(x,y,t) generated in uniform 32×32 grids points of the square flow domains, 0≤x≤1.0 and 0≤y≤1.0 were presented in three dimensional figures. Results showed that the velocity in two dimensional space does not change suddenly for any change in spatial levels, x and y. Therefore, C-N implicit Scheme applied to solve the N-S equations for fluid flow is consistent.en_US
dc.identifier.citationSiele Charles, Rotich John, Adicka Daniel. Numerical Solution of the Navier-Stokes Equations for Incompressible Fluid Flow by Crank-Nicolson Implicit Scheme. Applied and Computational Mathematics. Vol. 10, No. 1, 2021, pp. 10-18. doi: 10.11648/j.acm.20211001.12en_US
dc.identifier.issn2328-5613
dc.identifier.urihttp://ir-library.kabianga.ac.ke/handle/123456789/889
dc.language.isoenen_US
dc.publisherApplied and Computational Mathematicsen_US
dc.subjectNavier- Stokes Equationen_US
dc.subjectNonlinear Systemen_US
dc.subjectIncompressible Fluiden_US
dc.subjectVorticityen_US
dc.subjectCoriolis Forceen_US
dc.subjectDiscretizationen_US
dc.titleNumerical Solution of the Navier-Stokes Equations for Incompressible Fluid Flow by Crank-Nicolson Implicit Schemeen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acm.pdf
Size:
616.14 KB
Format:
Adobe Portable Document Format
Description:
Article Journal

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: