On Projection Properties of Monotone Integrable Functions

dc.contributor.authorOlwamba, Levi Otanga
dc.date.accessioned2024-03-13T07:05:01Z
dc.date.available2024-03-13T07:05:01Z
dc.date.issued2024-02-29
dc.descriptionResearch Article On Projection Properties of Monotone Integrable Functionsen_US
dc.description.abstractThis research formulates an (i − 1, i) - dimensional structure of µ (i−1,i) |f|p -vector measure integrable functions for i = 1, 2, ...n. Fixed point projection properties of a vector measure are appplied to determine the measurability of sets in the domain of integrable functions. Measurable sets of the form ΠiA (i,i+1) i−1 are partitioned into disjoint sets ΠiA i i−1 of finite measure.The obtained results demonstrate utility of concepts of vector measure duality, continuity from below of a measure and monotonicity of a vector measure in integrating functions.en_US
dc.description.sponsorshipUniversity of Kabiangaen_US
dc.identifier.citationOlwamba, L. O. (2024). On Projection Properties of Monotone Integrable Functions. Journal of Advances in Mathematics and Computer Science, 39(3), 29-36.en_US
dc.identifier.issn2456-9968
dc.identifier.urihttp://ir-library.kabianga.ac.ke/handle/123456789/793
dc.language.isoenen_US
dc.publisherJournal of Advances in Mathematics and Computer Scienceen_US
dc.subjectProjection propertiesen_US
dc.subjectMeasure spaceen_US
dc.subjectIntegrable functionsen_US
dc.titleOn Projection Properties of Monotone Integrable Functionsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On Projection.pdf
Size:
481.87 KB
Format:
Adobe Portable Document Format
Description:
Original Research Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: