On Generation of Measurable Covers for Measurable Sets Using Multiple Integral of Functions

dc.contributor.authorOlwamba, Otanga L
dc.contributor.authorOmukunda, Shem A
dc.contributor.authorOwino, Maurice O
dc.date.accessioned2021-08-19T17:29:46Z
dc.date.available2021-08-19T17:29:46Z
dc.date.issued2015-08
dc.descriptionResearch paper published in Journal of Mathematics and Statistical Scienceen_US
dc.description.abstractIn this article, we formulate an n-dimensional structure of measurable covers for measurable sets. Properties such as monotonocity, countable additivity and σ-finiteness of the projective tensor product of vector measure duality are largely applied.en_US
dc.identifier.citationOtanga, L. O., Aywa, S., & Owino, M. O. (2015). On generation of measurable covers for measurable sets using multiple integral of functions.en_US
dc.identifier.urihttps://www.researchgate.net/publication/281581737
dc.identifier.urihttp://ir-library.kabianga.ac.ke/handle/123456789/147
dc.language.isoenen_US
dc.publisherScience Signpost Publishingen_US
dc.subjectMeasurable coveren_US
dc.subjectMultiple integralen_US
dc.subjectVector measure dualityen_US
dc.titleOn Generation of Measurable Covers for Measurable Sets Using Multiple Integral of Functionsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On Generation of Measurable Covers.pdf
Size:
371.69 KB
Format:
Adobe Portable Document Format
Description:
Full text article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: