Local linear regression estimator on the boundary correction in nonparametric regression estimation

dc.contributor.authorLangat, Reuben C
dc.date.accessioned2022-01-26T06:48:02Z
dc.date.available2022-01-26T06:48:02Z
dc.date.issued2020-10-13
dc.descriptionJournal of Statistical Theory and Applicationsen_US
dc.description.abstractThe precision and accuracy of any estimation can inform one whether to use or not to use the estimated values. It is the crux of the matter to many if not all statisticians. For this to be realized biases of the estimates are normally checked and eliminated or at least minimized. Even with this in mind getting a model that fits the data well can be a challenge. There are many situations where parametric estimation is disadvantageous because of the possible misspecification of the model. Under such circumstance, many researchers normally allow the data to suggest a model for itself in the technique that has become so popular in recent years called the nonparametric regression estimation. In this technique the use of kernel estimators is common. This paper explores the famous Nadaraya–Watson estimator and local linear regression estimator on the boundary bias. A global measure of error criterion-asymptotic mean integrated square error (AMISE) has been computed from simulated data at the empirical stage to assess the performance of the two estimators in regression estimation. This study shows that local linear regression estimator has a sterling performance over the standard Nadaraya–Watson estimator.en_US
dc.identifier.citationCheruiyot, L. R. (2020). Local Linear Regression Estimator on the Boundary Correction in Nonparametric Regression Estimation. Journal of Statistical Theory and Applications, 19(3), 460-471.en_US
dc.identifier.issnISSN 1538-7887
dc.identifier.urihttps://doi.org/10.2991/jsta.d.201016.001
dc.identifier.urihttp://ir-library.kabianga.ac.ke/handle/123456789/278
dc.language.isoenen_US
dc.publisherAtlantis pressen_US
dc.subjectKernel estimatorsen_US
dc.subjectNonparametric regression estimationen_US
dc.subjectLocal linear regressionen_US
dc.subjectBiasen_US
dc.subjectVarianceen_US
dc.subjectAsymptotic mean integrated square error (AMISE)en_US
dc.titleLocal linear regression estimator on the boundary correction in nonparametric regression estimationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Local Linear Regression.pdf
Size:
5.51 MB
Format:
Adobe Portable Document Format
Description:
Full article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: