On the Zero Divisor Graphs of Finite Rings in Which the Product of Any Two Zero Divisors Lies in the Coefficient Subring
Loading...
Files
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Journal of Mathematics and Statistical Science
Abstract
Let r be a positive integer and 2 ≤ ∈k . Let ( ) kr k GR p p, be a Galois ring of order kr p and
characteristic k p . Consider, ( ) kr k R GR p p U = ,⊕ where U is a finitely generated ( ) kr k GR p p,
module. If Z R( ) is the set of zero divisors in R satisfying the condition 2 ( ( )) ( ) kr r Z R GR p p ⊆ ,
then it is well known that R is a completely primary finite ring and the structure of its group of units
has been studied before. In this paper, we study the structure of its zero divisors via the zero divisor
graphs.
Description
Research Journal on the Zero Divisor Graphs of Finite Rings in
Which the Product of Any Two Zero Divisors Lies
in the Coefficient Subring
Keywords
Citation
Adero, W. S., Daisy, I., & Oduor, O. M. (2016). On The Zero divisor graphs of Finite Rings in which the product of any two Zero divisors Lies in the Coefficient Subring.