Kernel function and nonparametric regression estimation: which function is appropriate?

dc.contributor.authorLangat, Reuben C
dc.contributor.authorOrwa, George O
dc.contributor.authorOdhiambo, Romanus O
dc.date.accessioned2022-01-25T12:44:25Z
dc.date.available2022-01-25T12:44:25Z
dc.date.issued2020
dc.descriptionResearch article on African journal of mathematics and statistics studiesen_US
dc.description.abstractIn regression estimation, researchers have the option of using parametric or nonparametric regression estimation. Because of the challenges that one can encounter as a result of model misspecification in the parametric type of regression, the nonparametric type of regression has become popular. This paper explores this type of regression estimation. Kernel estimation usually forms an integral part in this type of regression. There are a number of functions available for such a use. The goal of this study is to find out an appropriate function that can be used for weighting in regression estimation. Though from the theoretical results epanechnikov function is the optimal one, there are situations where Gaussian function may be advantageous. Simulations show that the estimates inherit the smoothness of the kernel functions used.en_US
dc.identifier.citationCheruiyot, L. R., Orwa, G. O., & Otieno, O. R. KERNEL FUNCTION AND NONPARAMETRIC REGRESSION ESTIMATION: WHICH FUNCTION IS APPROPRIATE?.en_US
dc.identifier.issn2689-5323
dc.identifier.urihttp://ir-library.kabianga.ac.ke/handle/123456789/272
dc.language.isoenen_US
dc.publisherabjournalsen_US
dc.subjectKernel Functionsen_US
dc.subjectSmooth Estimatesen_US
dc.subjectDensity Estimationen_US
dc.subjectNonparametric Regression Estimationen_US
dc.titleKernel function and nonparametric regression estimation: which function is appropriate?en_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
KERNEL FUNCTION.pdf
Size:
328.19 KB
Format:
Adobe Portable Document Format
Description:
full article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: