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ABSTRACT

The application of mathematical models in simulating processes that are biological in nature
has been in effect for a long time. A great number of mathematical, Computational, En-
gineering and Physical approaches have been administered to several aspects of cancerous
tumour development , with a view of appreciating how cancer cell population responds to
medical intervention. In most of these models however, no much attention was given to the
effects of incubation in the presence of chemotherapy on the dynamics of tumour growth.
This research therefore considered a mathematical model for the consequences of incubation
and Chemotherapy on cancerous tumour growth dynamics by formulating a deterministic S
(susceptible), E (exposed), I (infectious), R (removed) model using Delay differential equations.
The delay or incubation in this case accounted for the duration between the exposure of a cell
to cancer causing viruses and the onset of disease symptoms. Reproduction number (R0) of
the model was ascertained using next generation matrix approach. The stability analysis of
Cancer Free Equilibrium Point (CFEP) and Cancer Endemic Equilibrium Point (CEEP) of
the model were also investigated. MATLAB software was used for numerical simulations to
validate the analytic results. The investigation and analysis of the consequences of incubation
and Chemotherapy on the stability of the equilibrium points was also done. From the numerical
findings it was found that R0 at CFEP was obtained at 0.6667 and at 1.1037 the CEEP was
stable. This study of tumour growth dynamics was significant in that it helps establish the stage
and the extent of cancer spread within the body cells. It shall also help develop a better drug
administration procedure as well as provide mechanistic insights. Parameter values used were
mostly hypothetical values.
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DEFINITIONS

Incubation - This is the phase in the development of an infection between the time a pathogen

enters the body of an organism and the time the first symptoms appear

Chemotherapy - This a method of cancer treatment that makes use drugs to stop the growth

of cancer cells, either by killing the cells or by stopping them from dividing and attacking the

adjacent cells.

Dynamics - Growth dynamics refer to the changes in the cell population or organisms over

time

A mathematical Model - This is an abstract description or representation of a concrete system

using mathematical concepts and language.

Biopsy - This is a medical procedure where a small sample of tissue is taken from the body for

examination under a microscope.
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CHAPTER ONE

INTRODUCTION

1.1 Overview

The chapter provides foundation knowledge on cancer modeling. Definition of cancer and types of

tumors are illustrated including a brief discussion on cancer statistics and its methods of treatment. The

definition of Delay Differential Equations, types of Delay Differential Equations, simulations of delay

differential equations and their analytic solutions are also discussed. Finally, the problem statement for

the research, the objectives of the research, both general and specific objectives and the significance of

the research are also given attention.

1.2 Background information

Incubation is the phase in the development of an infection between the time a pathogen enters the

body of an organism and the time the first symptoms appear while chemotherapy is a method of cancer

treatment in which drugs are used to stop the growth of cancer cells or to stop them from dividing and

attacking the adjacent cells. Upon admission of chemotherapy, the cancerous cells are killed by the

drug and therefore removed from the rest of the cells , this informed the use of the model SEIR where

"R" represents the cells that have been killed or removed by the drug or by natural immunity.

Growth dynamics refers to the changes in the cell population or organisms over time. A mathematical

model is an abstract description or representation of a concrete system using mathematical concepts

and language, a process which is referred to as mathematical modeling. On the other hand, biopsy

is a medical procedure where a small sample of tissue is taken from the body for examination under

a microscope. Mathematical modeling of biological processes especially on cancer has in recent

times received much attention. This coupled with associated numerical simulation has reduced

the complicated and costly experimental procedures (Nyarko et al. 2020). It has been adopted by
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several epidemiologists as one of the approaches to study non-communicable diseases such as chronic

respiratory disease, diabetes, stroke among others.

According to World Health Organization (2018) cancer is rated second as a main cause of mortality

after heart diseases . Cancerous tumour growth, spread to the adjacent tissues and treatment have been

explained by various mathematical models in the past. Terminal illnesses or diseases are conditions

which cannot be cured hence leads to the death of the affected persons. Examples of terminal

diseases are Liver disease, HIV, Lung disease, advanced heart disease, advanced cancer among others.

According to World Health Organization (2020), breast, lung, colon, rectum and prostate cancers are

the most common ones. Since cancer cases has been on an upward trajectory, this is a clear indication

that most of the measures put in place to address this issue has not been very effective. In this study we

examine how mathematical models can be used to imitate tumour growth as well as cancer medication.

According to Sinha (2018) tumour is an abnormal mass of tissue which may be solid inside or filled

with fluid. There are three tumor types, namely, benign, premalignant and malignant tumours. When

the development of tumour cells are restricted to the location of emergence, does not spread to other

sites of the body, grows slowly and have distinct borders, then they are said to be benign tumours. Such

tumours are non-cancerous. Premalignant tumours are those in which cells are not yet cancerous but

have the potential of becoming cancerous. Finally, when the cells are unusual, grow rapidly and can

proliferate to other sections of the body, then they are referred to as malignant tumours or cancerous

cells.To establish if a tumor is cancerous or benign, a fragment of the cells is taken through a biopsy

procedure by a doctor and then examined. A pathologist then analyzes the biopsy under a microscope

in a lab to make a diagnosis. On the other hand, cancer is a genetic malady caused by changes to genes

that control the way the body cells function, how they grow and how they fractionate.

Cancer cells diverge from the other cells in different ways. For example, their growth takes place even

in the absence of the signal initiating their growth, continues growing despite the signals stopping their

growth. They also attack the surrounding cells of the body among others (Sinha, 2018). According

to Das et al. (2022) cancer is regarded as one of the most exhausting illness to treat and hence leads

to more deaths than most diseases and that combating cancer is crucial for public health. Over the

years several methods of cancer treatment have been used, these include hormone therapy, surgery,

radiotherapy, immune therapy and chemotherapy among others. Mathematical epidemiology has
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contributed to a more in-depth understanding of cancerous tumor growth as a terminal ailment, its

effect and possible future forecast about its spread in the body and the mechanism of its control and

treatment.

1.3 Delay Differential Equations

Delay Differential Equations (DDEs) are a framework of Ordinary Differential Equations (ODEs) in

which derivatives are dependent on previous states or past history. Many processes depend on past

history hence the choice of delay differential equations. There are two classes of Delay Differential

Equations, namely, Constant Delay Differential Equations and Variable Delay Differential Equations.

The Delay Differential Equation takes the form

x
′
(t) = f (t,x(t),x(t − τ)) ∀x ∈ ℜ

n and τ > 0 (1.1)

where

t is the time

x(t) is the current cancer stage and

x(t − τ) is the tumor stage at a past time (t − τ).

If τ is constant, then Equation (1.1) is referred to as Constant Delay Differential Equation otherwise

Variable Delay Differential Equations. In this study, Constant Delay Differential Equation as opposed

to variable delay differential equations were considered since the time delay ,τ , cannot be zero or less

for this research.

At time, t , the evolution of the Equation (1.1) depends on the current time, t, current status, x(t), of the

tumor and at some different time τ > 0 in the past.Since the time delays are constant and after several

time delays, Equation (1.1) becomes,

x
′
(t) = f (t,x(t),x(t − τ1), . . . ,x(t − τn)) (1.2)

If the derivatives at the time delays are incorporated into Equation (1.2), it then yields

x
′
(t) = f (t,x(t),x(t − τi),x

′
(t − τ j)), i = 1, . . . ,n, j = n+1, . . . ,m (1.3)

3



in which x
′
(t − τ j ) is the derivative as the time delays.

At time, t , the evolution of the Equation (1.3) is dependent on the present time, t, current status, x(t),

of the system and status of the system, x(t − τ), that was for latest units of time.

x
′
(t) = f (t,x(t),

∫ t

t−τ

φ(x(s)ds) (1.4)

where∫ t
t−τ

φ(x(s)ds) is the continuous version of DDEs and

φ is the history function

1.3.1 Simulating Delay Differential Equations

Initial Value Problem (IVP) for the Delay Differential Equation (DDE) is generally expressed in the

form

x
′
(t) = f (t,x(t),x(t − τi)), i = 1, . . . ,n, t ≥ t0 (1.5)

The Initial Conditions (ICs) or History function is

x(t) = x0(t), t ≤ t0 (1.6)

where

x0(t) is known as history function or Initial function.

For instance.

For

x
′
(t) = f (t,x(t),x(t − τ)), t ≥ t0 (1.7)

We provide initial data on interval [t0 − τ, t0] ∀t ∈ [t0 − τ, t0], as x(t) = φ(t) from equation (1.7)

if f is smooth and is true for x0(t) we have

lim
t→t−0

x0(t)
′
̸= lim

t→t+0
x0(t)

′
(1.8)

that is, there exists a jump derivative discontinuity at t0. A jump discontinuity occurs when a function

leaps or steps, from one point on its curve to another, frequently dividing it into two distinct pieces.
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These discontinuities spread in time. We not only get discontinuity at initial point, but also at later

time points.

1.3.2 Analytical solution of Delay Differential Equations

From Equation (1.7) and the original functions on the range [t0 − τ, t0] in which τ is the delay term,

we first examine the range [t0, t0 + τ] on which the Delay Differential Equation reduces to Ordinary

Differential Equation. We obtain a solution legitimate on this range and then use this solution as the

initial function for the next interval [t0 + τ, t0 +2τ]. We then find a solution on [t0 + τ, t0 +2τ]. The

solution is then applied forward from one interval to another. Proceeding this way gives rise to a

solution of Ordinary Differential Equations on the interval [t0 − τ,∞] which becomes smoother and

smoother with time ,t, as t increases.

1.4 Statement of the problem

Despite several studies and discoveries aimed at suppressing cancer prevalence prevention or medica-

tion, the disease has continued to be a great problem World-wide in all populations without regard to

wealth or social rank. Some of these studies recommended medication such as chemotherapy without

details on the stage at which the medication is optimal. As reported by the International Agency for

Research on Cancer (IARC 2020), one in every five people in the world develops cancer during their

lifetime. One in eight men and one in eleven women succumb to the disease according to IARC (2020).

Breast cancer accounted for one in four cancer cases diagnosed among women in 2020 worldwide.

Cervical, colorectal, thyroid and lung cancers are also prevalent among women while prostate cancer

and lung cancer are the most popular among men which together account for close to one-third of

all male cancers. For this reason a mathematical model that explores the ramifications of incubation

period and chemotherapy on the tumour growth dynamics was considered for this study. Chemotherapy

unlike other methods of cancer treatment does not target non-cancerous cells while incubation period

gives the duration within which the medication would be optimal.

1.5 General Objective

The general objective of the research is to develop a mathematical model for the consequences of

incubation and chemotherapy on tumour growth dynamics.
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1.6 Specific Objectives

The specific objectives of this study were;

(i) To formulate a SEIR mathematical model that describes the effects of incubation and chemother-

apy on tumour growth dynamics.

(ii) To compute equilibrium point of the model (CFEP and CEEP) to help understand important

characteristics of the model.

(iii) To examine the stability of the equilibrium points of the model so as to help determine whether

the model will remain stable under various conditions and inputs.

(iv) To carry out numerical simulations of the model using MATLAB software so as to predict the

behavior of the model.

1.7 Justification of the study

The deterministic SEIR model developed in this study was fundamental in addressing the cancerous

tumour growth dynamics for effective treatment. It took into account the effects of time delay and

chemotherapy on the cancerous tumour growth dynamics. This in addition aids in developing a better

drug administration procedure as well as providing mechanistic insights. However , this study is

limited to mathematical modeling at this stage and may require the services of a medical practitioner

for implementation.

1.8 Significance of the study

Cancer being a major cause of fatality worldwide , more and effective treatment methods are important

in addressing this challenge. Further, there is need to improve the knowledge of cancerous tumour

growth dynamics and treatment options. In view of this and for optimization of treatment this study

presents a method whose findings shall help improve cancer treatment.

Governments spend huge sums of money in their effort to respond to the problem of cancer treatment.

the results of this study has provided insights on improved and better way to monitor cancerous tumour

growth dynamics and how time delay and chemotherapy effects helps in improved treatment.
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Medical practitioners in their effort to provide better medical treatment to the cancer patients , shall

make use of the results of this study from the stability analysis of the CFEP to design clinical trials

that are more effective in cancer treatment.

This study sought to formulate a mathematical model for the effect of incubation and chemotherapy on

the dynamics of tumor growth in order to establish efficacy levels of the drugs.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The chapter delineates a snapshot of prior related studies which have been done in the field of cancer

research. A brief summary of the methods used, findings and limitations of such studies are outlined

here. The gaps identified formed the basis and the foundations on which this study is built. The aim

was to come up with a better way of managing tumor growth and treatment. The study sought to

achieve this.

2.2 Review of related literature

There have been considerable number of literature on the development of mathematical models on

cancerous tumour growth dynamics. A number of mortality especially in developing countries have

been associated with cancer. These models have contributed to improved cancer treatment as well as

post treatment care for cancer patients.

The growth kinetics of cancer cells were examined by Aliasghari et al. (2023) using a fractional

derivative model. The power-law kernel of the time fractional Caputo derivative was used to depict

the memory effects. To apply the suggested fractional model numerically,the trapezoidal rule was

used. The new fractional model’s validity and effectiveness in demonstrating the presence of the

cancer growth dilemma were confirmed by some numerical studies. This phenomena demonstrated

how a higher non-stem cancer cell death rate (due, for example, to medication or tumor excision)

caused cancer stem cells to propagate more quickly. Even though it’s unknown how cancer stem

cells contribute to the disease, it was important to know that conventional treatments could eradicate

non-stem cancer cells. New treatments that eliminated cancer cells and prevented tumour recurrence

used medicines that were specifically aimed at cancer stem cells as opposed to therapies that were

8



not. Clearly, fractional differentiation could be used to simulate biological systems as a highly

effective approach. In addition to these benefits, fractional-order differentiation above integer-order

one also had the advantage of having unique traits like heredity, long-range memory, and long-range

interactions. They discovered the effectiveness of the suggested method by contrasting the outcomes of

the fractional-order derivative model with the integer-order one. The solutions of their model matched

reality more closely than the results of the conventional integer-order model, proving the efficiency of

the proposed method.However , less attention was given to the effect of incubation or time delay on

the tumour growth dynamics an aspect which this research gave attention.

Chamani et al. (2023) used in vitro research to produce a measurement for the degree of heat damage

in murine pancreatic carcinoma cell lines following exposure to temperatures in the range of 42.5oC to

50oC and obtained thermal injury kinetic model parameters. Their findings implied that the revised

Arrhenius model integrating the time delay to address the shoulder region is best acceptable for

use in moderate hyperthermia therapies up to 60 minutes of heating. When cells were exposed to

time-temperature profiles resembling those expected at the edge of an ablation zone, the accuracy of

the created injury predicting models was experimentally tested. They however, despite having time

as a factor, they did not consider the effect of time along side medication on the dynamics of tumour

growth.

A mathematical model for tumour cell growth and survival considering environmental stress level

was developed by Sabrina et al. (2022). The model outlined the influence of oxygen level, nutrient

saturation, drug concentrations or mechanical forces to the tumour cells all together by bringing

into play the "environmental stress level”. A higher stress level can reduce the growth of cells

while promoting cell death hence influencing cell development. As an accreditation of the idea, they

contrasted the two styles of ordinary differential equations for modeling the dynamics of tumour

cells under varied nutrient concentration correspondingly taking into account the stress levels of the

environment and without considering the environmental stress levels. Their research neither considered

time delay nor chemotherapy as factors that could affect tumour growth.

A mathematical model that considered the reciprocal action between the cancerous cells, the body

immunity and viral therapy was fronted by Ali et al. (2022). The model considered the cell population in

four different sub-populations. They included uninfected cells, infective cells, immune cells and virus-
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free cells. The research showed an analysis of the stochastic mathematical model for the fluctuation

of cancer cell population considering viro-therapy. The outcomes of the model have re instituted

the attributes of the problems biological in nature, such as dynamical coherence, boundedness and

positivity. These are the requisite considerations for mathematical modeling in these areas of study. The

current computational techniques, such as the Stochastic Euler method, the Euler Maruyama method

together with the Stochastic Runge-Kutta method, did not rejuvenate the properties mentioned above.

The research suggested a stochastic non-standard finite difference method which is efficacious, cost

effective, and contains all the feasible properties desired. The current standard stochastic techniques

coincide with limitations after some time. The result from the non-standard finite difference method

is steady and concentrates over all time intervals. This model considered viral therapy as opposed to

chemotherapy.

The changing characteristic of the nonlinear mathematical model which was initially fronted by De

Pillis et al. (2003) was advanced by Das et al. (2022) in a mathematical model for cancer analysis

considering time delay by introducing the delay component in the relationship between the tumour

cell itself and the body’s defense system. This was done in an effort to ensure that the model is more

practical. The investigation of the mathematical model showed that, the elimination of the tumour cells

entailed a joint effort of both normal cells and the immune system without the drug administration.

However it was also shown that the immune system of the body did not acknowledge the tumour cells

immediately so as to give enough feedback time (i.e., the time delay was prolonged), the growth rate

of the tumour increased hence the system’s immune stability was lost and finally drifted away from the

tumour-free steady point. As a consequence, the immune–normal cell failed to effect the destruction

of the tumour burden. Despite an introduction of time delay, they did not include chemotherapy for

treatment instead they depended on the immunity of the body.

The investigation in a mathematical model for chemo-immunotherapy, which is a combination of

chemotherapy and immunotherapy for brain cancer by Nave (2022) depended mostly on the time

interval between treatment and dosage. The system of equations used included nonlinear first-order

ODEs. The mathematical model considered the interaction of immune system with cancer cells and the

treatment. The dynamic variables of the system are immature dendritic cells, immunogenic dendritic

cells, tolerogenic dendritic cells, naive T-cells, cytotoxic T-cells, proliferating cytotoxic T-cells, cancer

cells, and chemotherapy medicine. They proposed a new treatment protocol, which was essentially a

10



new analytical function that depended on the time interval between treatment and dosage. To investigate

the stability of the equilibrium points, it was necessary to solve the nonlinear algebraic equation related

to the mathematical model, which, in this case, was impossible analytically. Hence, they applied

the Singular Perturbed Vector Field (SPVF) algorithm to transfer the mathematical model to a new

coordinate with an explicit hierarchy and divided it into fast and slow subsystems. This procedure

enabled them to investigate only the fast subsystem, without losing the biological information of

the original model. They determined all equilibrium points of the model in the new coordinates and

their stability. The equilibrium points had no biological meaning in the new coordinates; hence, they

inversely transformed only the stable equilibrium points into the original coordinates of the model.

They investigated the mathematical model with their proposed treatment protocol, with constant dosage

and different time intervals between treatments, that is, 7, 14, 28, and 56 days. Thereafter, they

compared their analysis results with experimental (clinical) data. The optimal treatment was found

to correspond to the protocol with a 7 day interval between treatments. The next step involved the

application of the protocol with different dosages and time intervals simultaneously. They examined

the behaviour of cancer cells when the initial conditions were changed. All results were identified

to reach a state of equilibrium at approximately the same time. Indeed, this was dependent on the

treatment, which had been determined to vary in terms of dosage and time.

The development of a model with random noise on the dynamical behaviour of the tumour and the

immune system by Fathalla et al. (2021) assimilated the consequence of noise into a model for

tumour-immune system with Holling type III response functions to cater for the alterations in cell

dynamics. It made use of a stochastic Lyapunov function together with Ito’s formula, to provide

enough constrain for establishing the existing stationary distribution results, weak persistence, and

elimination of tumour cells. The stochastic model for tumour-immune interaction was used. The

research also showed that the growth of tumour can be reduced by increasing the intensity of the noise

as a fundamental factor in the existence of immune effectors.

In their mathematical model which considered the analysis of cancer, Dehingia et al.(2021) included

the time-delay in the interactivity amidst the tumour cells and the immune system of the body and

their stimulation processes. It analyzed and observed the model dynamics together with changes of

crucial restrictions and the effect of time delay on anti-tumour immune reaction. The delay term was

included in the model. As a consequence, the modified model demonstrated that the system was able to
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bring about varying responses even with the delay term included. In addition, it demonstrated that the

oscillations were continuous and couldn’t be eliminated through the addition of the delay term. The

numerical simulations and bifurcation analysis indicated that a “careful” consideration of the model’s

framework has to be determined so that the fixed-state becomes less stable. It was shown that the time

delay was not a requirement to originate oscillations since such oscillations could be generated even in

the absence of the delay term.

Arvind et al. (2021) established a model for tumour cells population growth with the human body’s

metastasis process and approved by the use of Rough set method in uncertain conditions. The study

used an ODE model to address tumour development and expectations about the sufficiency of growth

medication. This model was pivoted on the amount of tumour cells and the carrying capability. It was

found that the amount of cells increased with increase in time. The number of tumour cells reached a

constant state called the carrying capacity after some specific time of growth. It was also shown that, if

Tumor cells’ growth reaches the carrying capacity, then a few cells from the Tumor leave and make

another tumour. The rate of tumour cell growth would be proportional to the present cell population in

an event there are no dead tumour cells.

In order to analyze the behavior of the tumour-immune interaction system, Pal et al. (2021) used

conformable fractional derivatives. While working with biological systems, the approach did not

encounter any of the problems that other fractional order derivatives do. In order to explain the behavior

of tumour-immune models, it was preferable to use the conformable fractional order derivative, which

incorporated the idea of long run memory. It was demonstrated that both systems had distinct dynamical

behaviors by a graphic time series analysis of the data. The results of the time series analysis revealed

that the population growth of tumour cells originally grew suddenly, but as time passed, it then started

to decline and eventually became steady. The conformable fractional derivative may also be used with

tumour models that exhibit more complicated behaviors. By taking into account the proliferation of

other effector cells, particularly macrophages, and employing conformable fractional derivatives, the

behavior of tumour-immune interaction may also be investigated. The effectiveness of immunotherapy

in the model is established by the observations of stable dynamics of all cell populations in the fractional

order tumour model, where effector cells increase, tumour cells decay to zero, and immunotherapy

cells remain within a fixed range for all values of the fractional order parameter. They draw the

conclusion that following discretization, change in the external source of effector cells had no impact
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on the dynamics of tumour cells or immunotherapy cells, only on effector cells. The fact that tumour

cells disappeared with the same decay rate for all sigma values demonstrated the efficiency of the

system that was then offered for halting the growth of tumour cells in all kinds of systems.

Singh (2021) studied a mathematical model with mixed chemotherapy on tumour cells in two different

stages under depression effect. The research established that the rate of tumour growth is lower in

primary stage than secondary stage. They showed that the tumour growth depends on a decrease of

immune cells. The results of the model demonstrated that depression reduces the amount of immune

cells while increasing the tumour cell numbers. Depression in the primary stage did not affect both

immune cells and tumour cells in anyway because in the primary stage the patient does not know that

he has cancer. But as soon as he comes to know, the effect of depression affects the patient. As a

result, the depressions increases, the patient loses immune capability, leading to increased tumour cells.

When the effect of depression increases, the tumour cells increases greatly, due to which the effect of

chemotherapy is very low, almost inactive and the patient can die from depression.

The use of virotherapy as a treatment for cancer was developed by Zachary et al. (2020) in which a

system of four nonlinear differential equations was used . The model described interactions among

infected tumor cells, uninfected tumour cells, effector T-cells, and virions. It established that when

the virotherapy protocol is not strong enough to ensure tumour eradication, the model gives two

possibilities. The first possibility is a stable cancer persistence state where the tumour may shrink, but

is never eradicated. In such a case, the model predicts that virotherapy could be useful as a neoadjuvant

therapy in preparation for surgery or radiotherapy treatment. The second possibility is periodic cancer

recurrence that may indicate further progression of the tumour or metastasis. While Kim et al. (2015)

found that the most important factors in controlling short term tumour growth were the immune

response and the virus burst size, this model suggested that the virotherapy dosage and the infection

rate of the virus are key parameters to ensure long term tumour eradication.

Nyarko et al. (2020) fronted an advection-reaction-diffusion system of partial deferential equations

(PDEs) to explain interactions between tumour cells and extracellular matrix (ECM) at the macroscopic

level. They used a set of common differential equations to simulate the interaction between proteolytic

enzymes and the ECM at the subcellular level (ODEs). The macroscopic and microscopic events

were coupled together using a contractivity function. Their model included an addition that supplied
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nutrients from the underlying tissue. The PDE-ODE sets of equations modeled the beginning of

tumour cell infiltration of the host extracellular matrix. Several time and geographical scales at the

macroscopic and microscopic levels were taken into consideration by the model. The numerical

solution for the system of equations indicated roughly three separate strata of proliferative, quiescent,

and necrotic cell densities. This research contributed the following advances to the mathematical

models already in use for tumour invasion of host tissues. Several spatial and temporal scales were

present in subcellular, microscopic, and macroscale events. A contractivity function connected the two

time scales. As a result, scientists were able to identify how biochemical dynamics at the subcellular

level affected the toughness and motility of tumour cells. The model took into consideration how the

tumor microenvironments may restrict quiescent and proliferative cells through interaction.

Global stability analysis to control growth of tumour in an immune-tumour normal cell model with

drug administration in the form of chemotherapy by Paul et al. (2019) determined a range for the drug

administration rate so that the tumour free equilibrium can be made globally stable by constructing a

simple quadratic Lyapunov function. It was assumed that the administration of drug in the form of

chemotherapy followed the logistic growth law with a per capita decay rate of the drug once it has

been injected. Further it was assumed that the drug kills all types of cells.

Kozowska et al. (2018) established in their work that the primary cause of cancer-related mortality

is resistance to chemotherapies. They also noted that in order to increase patient survival, a greater

comprehension of the prevalence and dynamics of active resistance mechanisms is required. The study

put out the idea that employing extensive clinical data in mathematical modeling and simulation, it is

possible to accurately assess the worth of preclinical drugs in virtual cohorts. This method enables

efficient and affordable assessment of the additional value of combination medicines, which may

be challenging or expensive to evaluate in vivo or in patients. Sensitivity analysis revealed that the

percentage of cells eliminated after surgery was the most crucial parameter. Debulking surgery has been

proven to be a highly effective method of reducing the amount of tumour tissue present, and, unlike

chemotherapy, it is capable of removing a large portion of chemotherapy-resistant cells, hence lowering

the likelihood of resistance. Some clinical research showed that adequate cytoreduction produced

a considerable survival benefit which helped highlight the importance of surgery. Chemotherapy

efficiently destroys cancer cells that are sensitive to drugs, but it also gives resistant cells a selection

advantage since they can proliferate with less restrictions on resources and space. Additionally, it
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was determined that combination therapy had been recommended as a successful way to deal with

therapy failures in advanced solid tumors. To achieve a large and long-lasting survival advantage, it

was not generally recognized how many medications should be combined. The findings of this study

suggested that at the time of diagnosis, some tumor cells already had up to five resistance mechanisms

functioning. Throughout their analysis, they made the supposition that a targeted medication would

kill cancer cells with the corresponding active resistance mechanism just as well as platinum would kill

cancer cells with a platinum-sensitive resistance mechanism. Although each therapy’s effectiveness

varied, combining therapies can have beneficial synergistic benefits. Theoretical support for a therapy

paradigm based on their findings was offered, with the aim of maximizing the impact of platinum on

cancer cells while also overcoming resistance mechanisms with specific medications.

Yoichi et al. (2015) developed a kinetic model of tumour growth and its radiation response with an

application to Gamma Knife stereotactic radiosurgery to simulate the growth of tumour volume. This

was formulated using nonlinear Ordinary Differential Equation. It was established that tumour volume

consists of cancer cells that rapidly increases in number and the non-dividing cells. When subjected to

radio therapy, the multiplying cells die off gradually over a fixed period of time. The dead cells are

then cleared away with cell clearance time.

In the study, Delay Differential Model for tumour-Immune Response with Chemoimmunotherapy and

Optimal Control which was fronted by Rihan et al. (2014), developed a delay differential model with

exceptional control that illustrates the interactions of the tumour cells and the immune response cells

with external therapy. The intracellular delay was introduced into the model to account for the duration

required to stimulate the effector cells. The research showed that the performance of a combination of

therapy protocol of immunochemo therapy is better than the standard protocol of chemotherapy alone.

While for their study they looked at the time delay for intracellular cells to account for the duration

required to stimulate the effector cells. For this study , this duration is extracellular and accounts for

the duration between the exposure of a cell to cancer causing viruses and the onset of the disease

symptoms. This sets this research a head of the former as the performance of the chemotherapy is

better. In addition their study was however limited to the patients whose immune systems are strong

since one of the key parameters was immune cells thereby restricting the method.

In simulating the evolution of the total tumour cell number over time ,Heiko et al.(2014) used both
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partial differential equations (PDEs) and ordinary differential equations (ODEs) in their models. Partial

differential equation (PDE) model was used because the ordinary differential equation (ODE) model

lacked the spatial consideration. The infiltration of cancer and the metastatic diffusion are two vital and

fundamentally spatial procedures hence can be simulated using partial differential equations (PDEs)

models. The study took into account the total suppression of the volume of tumour by initiating cell

death in proliferating cancer cells, or by reducing the tumour support via decrease of the carrying

capability. The two forms of cancer medication could be included in differential equation models.

Rihan et al. (2012) developed a mathematical model for the interaction between the growth of tumour

cells and the immune system. In this study the interactions between the tumour-growth dynamics and

the immunotherapy was done using ordinary differential equations and delay differential equations. It

established that the elimination of tumour cells is dependent greatly on the intensity of medication.

The nonlinear mathematical model for the analysis of tumour treatment with Oncolytic Virus which

was advanced by Manju et al. (2011) was used to study the interconnection between Oncolytic virus

and the tumour cells. The analysis of model was done using the stability theory of the differential

equations. Runge-Kutta method was also used for numerical simulation of the model which up-held

the theoretical findings. It was established that both the infected and non-infected tumour cells and

hence tumour burden can be eradicated in the long run and that complete cure is possible through the

use of virus therapy, if the following requirements were accomplished. One, that when the Oncolytic

virus attacks and destroys cancer cells by direct eradication of the tumor cells, and, two, that, if altered,

as vectors permitting gene expressing anticancer proteins are delivered specifically to the tumour site.

In their research work, Ramis-Conde et al. (2008) presented a hybrid discrete-continuum mathematical

model for the invasion of cancer. In an effort to simulate adhesion forces, cancer cells were considered

as distinct entities that interacted with one another. In reaction to chemical and matrix gradients, cancer

cells move in a coordinated manner while multiplying and secreting enzymes that break down the

matrix. The chemoattractant gradients’ significance in the invasion process was underlined by the

model. A few cancer cells’ local invasion methods may be accurately reconstructed by computational

simulations of the model. The output of continuum models was in contrast to this.
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2.3 The Knowledge Gap

Most of the above mentioned studies did not take into consideration the effects of incubation or time

delay in their models. However, Dehingia et al. (2021) included the time delay in their study though

they did not consider chemotherapy as a treatment for tumour growth while, Rihan et al. (2014) used

delay differential equations to model the relationship between tumor cell growth and immune system.

Their study was however limited to those patients whose immune systems are strong since one of the

key parameters was immune cells thereby restricting the method. This study thus formulated a SEIR

deterministic mathematical model with delay differential equations (DDE) for the investigation of the

effects of incubation and chemotherapy on tumour growth dynamics.
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CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

Presented in this chapter are the definition and significance of basic reproduction number. The

methods of solution to achieve the objectives of the study and a discussion on some different types of

epidemiological models. Secondly, the approaches used to achieve the objectives of the study , the

illustrations of the SEIR model for the tumour dynamics, model assumptions and equations are also

outlined. In addition the model preliminary analysis, the calculation of the basic reproduction number,

computation of the Equilibrium points for both Cancer Free Equilibrium point and Cancer Endemic

Equilibrium point and the stability analysis of the equilibrium points for both local and global are

also given. Finally, a discussion of the sensitivity analysis of the basic reproduction number is also

discussed.

3.2 Methods of Solution

The mathematical model that describes the dynamics of tumour growth was formulated using a

compartmental SEIR model whose governing equations were Delay Differential Equations. The Delay

Differential Equations were preferred since they accounted for the incubation or period. The delay or

incubation period accounted for the duration from when a cell is exposed to cancer causing virus and

when the symptoms are observable. Again cause and effect does not happen at the same time, hence

the choice of these equations. Chemotherapy, compared to other methods of cancer treatments, is more

effective, has more advantages and is preferred as a support to other methods for example if one has

chemotherapy treatment after surgery, this may reduce the chances of the cancer coming back. The

equilibrium points of the system were established. The two stable states established were, the Cancer

Free Equilibrium point and the Cancer Endemic Equilibrium point. A system has an equilibrium point
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if there is no change in the system at all the time, (Widyaningsih et al. 2018). It is the stable-state

values of the model. At the infection-free stable state , Cancer Free Equilibrium Point ,E = I = R = 0 ,

hence S = N while at the Cancer Endemic Equilibrium Point all the S, E, I and R are all non-zero, that

is ,S > 0,E > 0, I > 0 and R > 0.

The stability of the Cancer Free Equilibrium Point and Cancer Endemic Equilibrium Point were

determined by constructing the next-generation matrix. This was done by first forming two Jacobian

matrices F and V from the diseased classes of the model equations. The Jacobian matrix is the first

partial derivative of the differential equations deduced from the compartmental diagram. The next

generation matrix is then computed from the matrices F and V . Where, F is the matrix for the new

cancer cells while V is the matrix of the transfers of infections from one compartment to another. The

matrix FV−1 is the next generation matrix. The most dominant Eigen value (spectral radius) of FV−1

is equivalent to the basic reproductive number of the model.

For instance, for a SEIR model from whose model equations are (3.1),(3.2),(3.3) and (3.4) as shown

below, the reproduction number can be calculated as follows,

dS
dt

= Θ−ΨS−ΠSI (3.1)

dE
dt

= ΠSI − (Ψ+ e)E (3.2)

dI
dt

= eE − (Ψ+Φ)I (3.3)

dR
dt

= ΦI −ΨR (3.4)

where

Θ - is the Recruitment rate of the Susceptible class, Ψ- is the Natural death rate, Π - is the infection

contact rate, e - is the infection rate of Exposed class and Φ - is the Recovery rate of the Infective class

f =

 ΠSI

0

 and v =

 (Φ+ e)E

−eE +(Φ+Ψ)I


where f and v are the vectors for the new infection rate and for the transfer of infections respectively,

which when partially differentiated gives the matrices F and V as
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F =

 0 ΠS

0 0

 and V =

 (Ψ+ e) 0

−e (Ψ+Φ)

 (3.5)

The inverse of V is given as

V−1 =
1

(Ψ+ e)(Ψ+Φ)

 (Ψ+Φ) 0

e (Ψ+ e)


which reduces to

V−1 =

 1
(Ψ+e) 0

e
(Ψ+e)(Ψ+Φ)

1
(Ψ+Φ)

 (3.6)

The next generation matrix FV−1 is then given by

FV−1 =

 0 ΠS

0 0


 1

(Ψ+e) 0

e
(Ψ+e)(Ψ+Φ)

1
(Ψ+Φ)

 (3.7)

 ΠSe
(Ψ+e)(Ψ+Φ)

ΠS
(Ψ+Φ)

0 0

 (3.8)

The reproduction number R0 is then given as

R0 = ρ(FV−1) =
ΠSe

(Ψ+ e)(Ψ+Φ)
(3.9)

where ρ represents the spectral radius of the constructed next generation matrix.

But from equation (3.1), if dS
dt = 0 and I=0 we have

Θ−ΨS = 0

hence

S = Θ

Ψ
at the Cancer Free Equilibrium point

Now Equation (3.9) reduces to

R0 =
ΘΠe

Ψ(Ψ+ e)(Ψ+Φ)
(3.10)
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From equation (3.10), the Cancer Free Equilibrium point (CFEP) is locally asymptotically stable if

R0 < 1, that is ΘΠe < Ψ(Ψ+ e)(Ψ+Φ), otherwise unstable if R0 > 1 .While the Cancer Endemic

Equilibrium Point (CEEP) is locally asymptotically stable if R0 > 1 and unstable if R0 < 1 . The global

stability of the Cancer Free Equilibrium point and Cancer Endemic Equilibrium Point were checked

using Lyapunov function method. From the Lyapunov function, the CFEP is globally asymptotically

stable when R0 ≤ 1 and unstable when R0 > 1 while the CEEP is globally asymptotically stable when

R0 > 1 otherwise unstable. The simulations of the model to establish the effects of variations of the

model’s parameters on its stability was done using the MATLAB computer program.

3.3 Types of Epidemiological Models

Stochastic (random) and deterministic or compartmental models are the two primary categories of

epidemiological models. The stochastic models account for variance due to chance in dynamics,

including exposure risk and the infectious vector itself. A deterministic model is one in which the

emergence of potential future states of the system is not susceptible to randomness. Most of these

models have been used by a number of researchers. The Susceptible-Infective-Susceptible (SIS) and

Susceptible-Infective-Recovered (SIR) models are among the frequently utilized models. These models

are widely used for understanding the transmission mechanisms and control of infectious diseases.

In this research, SEIR Mathematical model is formulated for the effects of incubation and chemotherapy

on the dynamics of tumor growth. A SEIR model is appropriate for the study of a disease where there

is a considerable post-infection incubation period in which the exposed is not yet infectious (Jones,

2007). In the model, the cells in the population, N(t), at time, t, are divided into four compartments.

These compartments include the susceptible S(t) which refers to the healthy cells which have not

yet come into contact with the cancerous cells. The exposed E(t) are the cells which have come into

contact with the cancerous cells but are not yet infective or infectious. The infective I(t) are those that

have become infected and are now cancerous and the removed R(t) are those that have been killed or

removed from the cell population due to chemotherapy. Hence for the cell population we have

N(t) = S(t)+E(t)+ I(t)+R(t) (3.11)
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The SEIR model is preferred over other models as it takes into account the latent period i.e exposed

sub population which is left out in other models such as SIS or SIR. Also it is amenable and can

easily be generalized to other models with more compartments. The transfer diagram is depicted in the

following Figure 3.1.

The Schematic illustration of the SEIR Model

where

µ1 S - Natural mortality rate of susceptible cells

µ2 E - Natural mortality rate of Exposed cells

µ3 I - Natural mortality rate of Infective cells

µ4 R - Rate at which the cancerous cells are removed

and µ1<µ4<µ2<µ3

Compartmental models are important in predicting properties of how diseases spread or the duration

of an epidemic in a population. It also allows for in-depth understanding of how different situations

may influence the aftermath of the epidemic for example, the most appropriate way of administering

meager number of medications in a population of cells.

3.4 SEIR Model for Tumor Dynamics

In a SEIR model the individuals in a population are divided into four sub-populations or compartments.

These compartments are the susceptible (S), which refers to the healthy cells which have not yet come

into contact with the cancer cells. The exposed (E) are the cells which have come into contact with

the Cancer cells but are not yet infective or infectious. The infective (I) are those that have become

infected with the cancer cells and are infectious and the removed (R) are those that have been removed

from the cell population upon application of chemotherapy drug which kills the cells.The Figure 3.2

below gives the SEIR model flow diagram.
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SEIR Model Flow diagram

where µi i=1, 2. . . 4 is the coefficient of natural mortality.

3.5 Model Assumptions

For the derivation of the model, the following important assumptions were taken into account.

i) There is uniform interaction of cells in the cell population which means that each and every cell

has an equal opportunity of being infected provided it comes into contact with the infected cell.

ii) The cell population under study is a closed population, the number of cells remains constant.

iii) There is removal of cancerous cells upon administration of chemotherapy

iv) Some cells are removed naturally due to immunotherapy hence does not transit to the next stage

of the SEIR model or after chemotherapy treatment.

v) There is an incubation period i.e. the time between the exposures of a cell to cancer causing

viruses to the onset of symptomatic disease.

vi) The recovered cells are assumed to acquire permanent immunity meaning there is no transfer

from the Recovered class back to the Susceptible class.

vii) The rate of mortality is higher in infective cells followed by exposed cells, then the removed

cells and lowest in susceptible cells i.e. µ1<µ4<µ2<µ3

The rate at which the cells transit from one sub population to another are expressed mathematically as

derivatives with time lags i.e. delay differential equations. The model is therefore formulated using

delay differential equations. In formulating the model, the assumption is that the size of cell population
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in each sub population is a differential function of time. In the SEIR model the total cell population

N(t) at a time t is given by Equation (3.11)

3.6 Model Equations

From the flow diagram, the parameters and the model assumptions the tumor dynamics was modeled

using the following delay differential equations.

dS
dt

= Λ− γSIτ −µ1S (3.12)

dE
dt

= γSIτ −µ2E −σE − (1−σ)βEτ (3.13)

dI
dt

= (1−σ)βEτ −µ3I − (α +η)Iτ (3.14)

dR
dt

= (α +η)Iτ +σE −µ4R (3.15)

The total cell population N, was given as N = S+E + I +R .

3.7 Model Preliminary Analysis

The preliminary analysis of the formulated model is given in this subsection. The analysis includes

positivity and boundedness of the model solution, calculation of the basic reproductive number,

determination and the stability analysis of the equilibrium points. Finally, the sensitivity analysis of the

basic reproductive number was also done. Positivity and boundedness are therefore essential features

of an epidemiological study as discussed below.

3.7.1 Positivity of the Solution of the Model

The model monitors the cell population in tumor dynamics, so all its associated parameters must be

non-negative. Positivity of the solution is one of the important features of an epidemiological model. It

is therefore important to prove that all state variables are non-negative for all time t ≥ 0. Further any

solution with positive initial values will remain positive for all the values of time t ≥ 0. Biologically,

positivity implies that the population will survive for a long time. Therefore to check how biologically

valid the proposed model is, the positivity of the proposed model was as shown.
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Theorem 1

Let S(0) ≥ 0,E(0) ≥ 0,I(0) ≥ 0 and R(0) ≥ 0, then it implies that all the variables of the model

S(t),E(t), I(t) and R(t) will all remain positive for all solutions of the model equations for t > 0

The closed region ∑ = {(S,E, I,R) ∈ ℜ4
+ ; such that 0 < N ≤ Λ

µ1
} is positively invariant set for the

model equations (3.12), (3.13), (3.14) and (3.15)

Proof

From the model equation (3.12)

dS
dt = Λ− (γIτ +µ1)S

dS
dt +(γIτ +µ1)S = Λ

Letting (γIτ +µ1) = A, the equation above becomes

dS
dt +AS = Λ

The integrating factor for the above Ordinary Differential Equation is given as e
∫

Adt = eAt

eAt dS
dt +ASeAt = ΛeAt

d
dt (SeAt) = ΛeAt

Integrating the above equation and substituting the limits yields

S(t)eAt −S(0)eA(o) = ΛeAt −ΛeA(0)

S(t) = S(0)e−(γIτ+µ1)t +Λ−Λe−(γIτ+µ1)t (3.16)

as t → ∞ , S(t) = Λ > 0 implying that S(t) is positive

From equation (3.13), (3.14) and (3.15) we can similarly show respectively that

E(t) = E(0)e−
∫ t

0(µ2+σ)+(1−σ)βE(k−τ)dξ +
∫ t

0
(γSIτ)e−

∫ t
w(µ2+σ)+(1−σ)βE(k−τ)dξ dw (3.17)

I(t) = I(0)e−
∫ t

0 µ3+(α+η)I(k−τ)dξ +
∫ t

0
[(1−σ)βE(k− τ)]e−

∫ t
w µ3+(α+η)I(k−τ)dξ dw (3.18)

R(t) = R(0)e−
∫ t

0 µ4dξ +
∫ t

0
[(α +η)I(k− τ)+σE]e−

∫ t
0 µ4dξ dw (3.19)

From the equations (3.16), (3.17), (3.18) and (3.19), since S(t)> 0,E(t)> 0, I(t)> 0 and R(t)> 0, it

implies that the region ∑ is positively invariant and so it is sufficient to consider solution of the model

equations.
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3.7.2 Boundedness of the solution of the Model

Boundedness refers to the behavior of solutions over a given time. Solutions should not grow in-

definitely but should remain within certain limits for example, population carrying capacity. In this

subsection a proof for boundedness of the solutions of the model equations is given. Since the model

deals with the cell population, it follows that at any time, t, the sum of the cell population of all the

compartments must not be greater than the whole cell population.

Theorem 2

Let the closed region ∑ = {(S,E, I,R) ∈ ℜ4
+ ; be such that 0 ≤ N ≤ Λ

µ1
} is bounded for the model

equations (3.12), (3.13), (3.14) and (3.15)

Proof

Let N(t) = S(t)+E(t)+ I(t)+R(t) (3.20)

Differentiating (3.20) with respect to t gives

dN
dt

=
dS
dt

+
dE
dt

+
dI
dt

+
dR
dt

(3.21)

Substituting (3.12), (3.13), (3.14) and (3.15) into (3.21) yields

dN
dt = Λ− γSIτ −µ1S+ γSIτ −µ2E −σE −βEτ +σβEτ +βEτ −σβEτ −µ3I −αIτ −ηIτ +αIτ +

ηIτ +σE −µ4R

=Λ−µ1S−µ2E −µ3I −µ4R

dN
dt ≤ Λ− (S+E + I +R)µ Where µ = is the mean of µ1,µ2,µ3 and µ4

Letting N = S+E + I +R yields

dN
dt ≤ Λ−µN

dN
µN −Λ

≤−dt (3.22)

Integrating equation (3.22) gives

∫ N
N0

dN
µN−Λ

≤
∫ t

t0 −dt

ln (µN −Λ) - ln (µN0 −Λ)≤−t − (−t0)
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ln ( µN−Λ

µN0−Λ
)≤ t0 − t

N(t)≤ Λ

µ
+

(µN0 −Λ)et0e−t

µ
(3.23)

limt→∞ N(t)≤ limt→∞
(µN0−Λ)et0e−t

µ
≤ Λ

µ

Hence N(t)≤ Λ

µ
which implies that 0 ≤ N(t)≤ Λ

µ
, therefore N(t) is bounded and so are S(t),E(t),I(t)

and R(t) of the model in the region ∑.

3.8 Equilibrium points of the Model and their Stability Analysis.

In epidemiology, equilibrium points play a crucial role in understanding disease dynamics .There are at

least two types of equilibrium points; the disease free equilibrium point and the endemic equilibrium

point. At the Disease-Free Equilibrium Point, the infected population (I) is zero and represents a

situation where the disease is not spreading while the Endemic Equilibrium Point is a point that

corresponds to a non-zero infected population. It occurs when the disease persists in the population.

The existence of equilibrium points depends on stability conditions, specifically when I > 0. The

Understanding these equilibrium points helps researchers analyze disease transmission and develop

strategies to control outbreaks.For this study, the two points are Cancer Free Equilibrium Point (CFEP)

and the Cancer Endemic Equilibrium Point (CEEP). The Cancer Free Equilibrium Point occurs

when there is absence of cancer while at the Cancer Endemic Equilibrium Point there is presence

of cancer within the cells. The equilibrium points are obtained by equating the model Equations

(3.12),(3.13),(3.14) and (3.15) to zero then solving. The stability of the model is then studied around

the equilibrium points. A system is said to be stable if all the eigenvalues obtained becomes linear

around the fixed points.

3.8.1 Cancer Free Equilibrium Point

The Cancer Free Equilibrium Point εo=(S0,E0, I0,R0) occurs when the infective class is absent and

consequently the recoveries. It is found by equating the model equations to zero then evaluating. At

the Cancer Free Equilibrium

dS(t)
dt

=
dE(t)

dt
=

dI(t)
dt

=
dR(t)

dt
= 0 (3.24)
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By substituting Equation (3.24) into the model equations (3.12), (3.13), (3.14) and (3.15) gives

Λ− γSIτ −µ1S = 0 (3.25)

γSIτ −µ2E −σE − (1−σ)βEτ = 0 (3.26)

(1−σ)βEτ −µ3I − (α +η)Iτ = 0 (3.27)

(α +η)Iτ +σE −µ4R = 0 (3.28)

If we let Iτ=0 ,Equation (3.25) becomes Λ - µ1S = 0 and so

S =
Λ

µ1
(3.29)

Equations (3.26), (3.27) and (3.29) reduces to zero since all the infectious, exposed and the recovered

sub-populations are all equal to zero i.e. I = E = R = 0

Therefore, the Cancer Free Equilibrium Point of the SEIR model is then given by

εo=(S0,E0, I0,R0) = ( Λ

µ1
,0,0,0)

3.8.2 Cancer Endemic Equilibrium Point

This is the point where cancer is persistent in the body cells. The Cancer Endemic Equilibrium Point

ε1=(S∗,E∗, I∗,R∗) exist when S∗ > 0,E∗ > 0, I∗ > 0 and R∗ > 0

The model equations (3.12), (3.13), (3.14) and (3.15) are then evaluated for S∗,E∗, I∗ and R∗ as follows

Letting S=S∗, Equation (3.25) becomes

Λ− γS∗Iτ −µ1S∗ = 0

And so

S∗ =
Λ

(γIτ +µ1)
(3.30)

From equation (3.26), letting S = S∗ and E = E∗, we obtain

γS∗Iτ −µ2E∗−σE∗(1−σ)βEτ = 0 (3.31)

(µ2 +σ)E∗ = γS∗Iτ(1−σ)βEτ
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E∗ =
γIτS∗

(µ2 +σ)

(1−σ)βEτ

(µ2 +σ)
(3.32)

It follows from (3.30), equation (3.32) becomes

γIτ

(µ2+σ)
Λ

(γIτ+µ1)
– (1−σ)βEτ

(µ2+σ)

E∗ =
γIτΛ− (γIτ +µ1)(βEτ −σβEτ)

(µ2 +σ)(γIτ +µ1)
(3.33)

From Equation (3.27), letting I = I∗, we obtain

µ3I∗ = βEτ −σβEτ −σ Iτ −ηIτ

I∗ =
βEτ −σβEτ −σ Iτ −ηIτ

µ3
(3.34)

From equation (3.28), letting E = E∗, and R = R∗, we obtain

(α +η)Iτ +σE∗−µ4R∗ = 0

µ4R∗ = (α +η)Iτ +σE∗

R∗ =
(α +η)Iτ

µ4
+

σ

µ4
E∗ (3.35)

Substituting (3.33) into Equation (3.35) above gives

R∗ = (α+η)Iτ

µ4
+ σ

µ4

[
γIτ Λ−(γIτ+µ1)(βEτ−σβEτ )

(µ2+σ)(γIτ+µ1)

]
R∗ = (α+η)Iτ

µ4
+ σγIτ Λ−σ(γIτ+µ1)(βEτ−σβEτ )

µ4(µ2+σ)(γIτ+µ1)

R∗ =
(µ2 +σ)(γIτ +µ1)(α +η)Iτ +σγIτΛ−σ(γIτ +µ1)(βEτ −σβEτ)

µ4(µ2 +σ)(γIτ +µ1)
(3.36)

Hence the cancer Endemic Equilibrium Point is

ε1 =



S∗

E∗

I∗

R∗


=



Λ

(γIτ+µ1)

γIτ Λ−(γIτ+µ1)(βEτ−σβEτ )
(µ2+σ)(γIτ+µ1)

βEτ−σβEτ−σ Iτ−ηIτ

µ3

(µ2+σ)(γIτ+µ1)(α+η)Iτ+σγIτ Λ−σ(γIτ+µ1)(βEτ−σβEτ )
µ4(µ2+σ)(γIτ+µ1)


(3.37)
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3.9 Determination of the basic reproductive number

The basic reproduction number denoted by R0 is the most significant quantity in disease modeling.

It is defined as the number of new infection incidences emanating from one infection known as the

primary infection case in a completely vulnerable population. The reproduction number provides

an overall measure of the potential for the spread of an infection within a completely susceptible

population. Reproduction number also gives an elementary and explicit elucidation for the growth

and decomposition of an endemic disease. The parameter is dependent not only on the transmission

coefficient but also on the average duration of the infection of the disease.

A higher value of the reproduction number (R0 ) may be interpreted to mean a higher therapeutic

intervention needed. Such intervention is to reduce the advancement and in the long run do away with

the disease from the population under study. When R0 < 1 the spread of cancer within the cells will

reduce and finally die off while when R0 > 1 the infection will persist. To determine the reproductive

number, the dominant or maximum eigenvalue of the next generation matrix is computed. The spectral

radius of the matrix FV−1 gives the reproduction number that is, R0 = ρ(FV−1) where ρ is the spectral

radius of the next generation matrix, F is the matrix for the new cancer cells while V is the matrix of

the transfers of infections from one compartment to another.

The vectors for the infected class and the uninfected class are then identified. The infected classes

are E and I which are represented by X = [E, I]T while the uninfected class are represented by vector

Y = [S,R]T . The vector for the new infection rate is,

f =

 γSIτ

0



This is the vector for new infections from the susceptible sub-population into the exposed sub-

population. The vector for other infections from compartment to another is given as

v =

 (µ2 +σ)E +(1−σ)βEτ

−(1−σ)βEτ +µ3I +(α +η)Iτ
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The product of F and V−1 gives the next generation matrix

The matrix F = ( ∂ f
∂X |ε0) is formed by partial derivative of the vector of new infection rates evaluated at

the Cancer Free Equilibrium Point while the matrix V = ( ∂v
∂X |ε0) is formed from the partial derivative

of the vector of other rates which are not new infections evaluated at the Cancer Free Equilibrium

Point. Therefore

F =

 ∂ f
∂E

∂ f
∂ I

∂ f
∂E

∂ f
∂ I

 and V =

 ∂v
∂E

∂v
∂ I

∂v
∂E

∂v
∂ I


Hence

F =

 0 γSe−λτ

0 0

 and V =

 (µ2 +σ)+(1−σ)βe−λτ 0

−(1−σ)βe−λτ (µ3 +(α +η)e−λτ )



The inverse V−1 of V is given as

=
1

(µ2 +σ +βe−λτ −σβe−λτ )(µ3 +αe−λτ +ηe−λτ )

 (µ3 +αe−λτ +ηe−λτ ) 0

βe−λτ −σβe−λτ µ2 +σ +βe−λτ −σβe−λτ



=

 1
µ2+σ+βe−λτ −σβe−λτ

0

βe−λτ −σβe−λτ

(µ2+σ+βe−λτ −σβe−λτ )(µ3+αe−λτ +ηe−λτ )
1

(µ3+αe−λτ +ηe−λτ )



Therefore FV−1 reduces to

 0 γSe−λτ

0 0


 1

µ2+σ+βe−λτ −σβe−λτ
0

βe−λτ −σβe−λτ

(µ2+σ+βe−λτ −σβe−λτ )(µ3+αe−λτ +ηe−λτ )
1

(µ3+αe−λτ +ηe−λτ )



=

 γSe−λτ (βe−λτ −σβe−λτ )

(µ2+σ+βe−λτ −σβe−λτ )(µ3+αe−λτ +ηe−λτ )

γSe−λτ

(µ3+αe−λτ +ηe−λτ )

0 0
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And so

R0 =
γSe−λτ (βe−λτ −σβe−λτ )

(µ2 +σ +βe−λτ −σβe−λτ )(µ3 +αe−λτ +ηe−λτ )
(3.38)

substituting equation (3.38) into equation (3.29), we obtain the following

R0 =
βΛγe−2λτ (1−σ)

µ1(µ2 +σ +βe−λτ −σβe−λτ )(µ3 +αe−λτ +ηe−λτ )
(3.39)

3.10 Determination of the Stability of the Equilibrium Points

The study of the stability of the equilibrium points considers the linearization of the model Equations

about both the Cancer Free Equilibrium Point and the Cancer Endemic Equilibrium Point by taking

the Jacobian Matrix of the model equations.

3.10.1 Local Stability of the Cancer Free Equilibrium Point

Local stability refers to the behavior of a system near an equilibrium point (also known as a fixed point).

An equilibrium point (Z0) is considered locally stable if, for any neighborhood (W) of (Z0), there

exists another neighborhood (W0) such that if the initial state (Z) is within (W0), the system trajectory

remains within (W) for all time. In other words, nearby trajectories converge to the equilibrium point.

The local stability of the Cancer Free Equilibrium Point therefore is the point where if the system is

put nearby the equilibrium point, then it will converge to the equilibrium point in some time.

Theorem 3

The Cancer Free Equilibrium Point ε0 is locally stable if R0 < 1 whereas ε0 is unstable if R0 > 1.

Proof

The Jacobian matrix at the Cancer Free Equilibrium Point is computed by differentiating each of the

equations (3.12), (3.13), (3.14) and (3.15) with respect to S, E, I and R and letting E = I = R = 0. The

matrix is then defined as,
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Jε0 =



−µ1 0 −γSe−λτ 0

0 −(µ2 +σ +βe−λτ −σβe−λτ ) γSe−λτ 0

0 βe−λτ −σβe−λτ −(µ3 +αe−λτ +ηe−λτ ) 0

0 σ αe−λτ +ηe−λτ −µ4


(3.40)

And the associated polynomial is given as | Jε0 −λ I |= 0 at the Cancer Free Equilibrium Point. Apply-

ing (3.29) in (3.40) we get

∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ1 −λ 0 − γΛe−λτ

µ1
0

0 −(µ2 +σ +βe−λτ −σβe−λτ )−λ
γΛe−λτ

µ1
0

0 βe−λτ −σβe−λτ −(µ3 +αe−λτ +ηe−λτ )−λ 0

0 σ αe−λτ +ηe−λτ −µ4 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(3.41)

Letting A=-µ1, B= − γΛe−λτ

λ1
, C= -(µ2 +σ +βe−λτ −σβe−λτ ), D= γΛe−λτ

µ1
, Y= βe−λτ −σβe−λτ , F= -

(µ3 +αe−λτ +ηe−λτ ), G=σ , H= αe−λτ +ηe−λτ and Z= -µ4

Equation (3.41) reduces to

∣∣∣∣∣∣∣∣∣∣∣∣∣

A−λ 0 B 0

0 C−λ D 0

0 Y F −λ 0

0 G H Z −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

On solving we obtain the values of λ1,λ2,λ3 and λ4 as follows

λ1 = A , λ2= Z

λ3 = (C+F)+
√

C2+F2−2CF+4DY
2

and

λ4 = (C+F)−
√

C2+F2−2CF+4DY
2

The Cancer Free Equilibrium point ε0 in the model equations is asymptotically stable if λ1 ,λ2,λ3 , λ4 <

0 and unstable if at least one of the λ1 ,λ2,λ3 , λ4 is greater than zero for all µ1,µ2,µ3,µ4,σ ,β ,η ,α,Λ
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and γ being positive. The first two eigenvalues λ1 = −µ1 and λ2 = −µ4, which are real negative

values, are a sufficient condition for local stability. It is also clear that λ4 is less dominant compared to

λ3 because of the subtraction sign in the numerator. λ3 is therefore the most dorminant eigenvalue.

(C+F)+
√

C2+F2−2CF+4DY
2 <0

for the stability of the Cancer Free Equilibrium point

DY < CF

(Λγe−λτ

µ1
)(βe−λτ −σβe−λτ )< (µ2 +σ +βe−λτ −σβe−λτ )(µ3 +αe−λτ +ηe−λτ )

Λγe−λτ (βe−λτ −σβe−λτ )

µ1(µ2 +σ +βe−λτ −σβe−λτ )(µ3 +αe−λτ +ηe−λτ )
< 1

R0 < 1 . Hence the Cancer Free Equilibrium is stable whenever R0 < 1 .

3.10.2 Local Stability of the Cancer Endemic Equilibrium Point

Theorem 4

The Cancer Endemic Equilibrium Point ε1 of the model Equations (3.12), (3.13), (3.14) and (3.15) is

locally stable in the feasible region of the model Equations if R0 > 1

Proof

We first construct the Jacobian matrix by taking the derivatives of the model equations at the Cancer

Endemic Equilibrium Point with respect to S∗,E∗, I∗ and R∗ from which we obtain the following matrix.

Jε1 =



−(γIτ +µ1) 0 −γS∗e−λτ 0

γIτ −(µ2 +σ +βe−λτ −σβe−λτ ) γS∗e−λτ 0

0 βe−λτ −σβe−λτ −(µ3 +αe−λτ +ηe−λτ ) 0

0 σ αe−λτ +ηe−λτ −µ4


And the associated polynomial is given as |Jε1 −λ I|= 0 as follows



−(γIτ +µ1)−λ 0 −γS∗e−λτ 0

γIτ −(µ2 +σ +βe−λτ −σβe−λτ )−λ γS∗e−λτ 0

0 βe−λτ −σβe−λτ −(µ3 +αe−λτ +ηe−λτ )−λ 0

0 σ αe−λτ +ηe−λτ −µ4 −λ


= 0

(3.42)
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The characteristic equation is obtained by finding the determinant of the above matrix and equating to

zero.

Letting J=−(γIτ +µ1),K =−γS∗e−λτ ,L = γIτ ,M =−(µ2+σ +βe−λτ −σβe−λτ ),P = γS∗e−λτ ,Q =

βe−λτ −σβe−λτ ,T =−(µ3 +αe−λτ +ηe−λτ ),U = σ ,V = αe−λτ +ηe−λτ and W= −µ4 , equation

(3.42) becomes ∣∣∣∣∣∣∣∣∣∣∣∣∣

J−λ 0 K 0

L M−λ P 0

0 Q T −λ 0

0 U V W −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

On solving we obtain the values of λ1,λ2 , λ3 and λ4 as follows

λ1 =J , λ2= W

λ3 = (M+T )+
√

M2+T 2−2MT+4PQ−4KLQ
2

and

λ4 = (M+T )−
√

M2+T 2−2MT+4PQ−4KLQ
2

For Cancer Endemic Equilibrium point to be stable at least one of the λ1,λ2 , λ3 , λ4 is greater than

zero. It is clear that both λ1 = −(γIτ + µ) and λ2 = −µ4 are negative real values. While λ4 is less

dominant compared to λ3 . This leaves λ3 as the most dominant Eigen value.

For

(M+T )+
√

M2+T 2−2MT+4PQ−4KLQ
2 > 0

PQ−KLQ > MT

which gives

Λγe−λτ (βe−λτ −σβe−λτ )

µ1(µ2+σ+βe−λτ −σβe−λτ )(µ3+αe−λτ +ηe−λτ )
> (µ1+γIτ )

(1+γIτ )

R0 > (µ1+γIτ )
(1+γIτ )

, when (µ1 + γIτ) > (1+ γIτ) since µ1,γ and Iτ are all positive, a condition for the

persistence of the Cancer Endemic Equilibrium point.
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3.10.3 Global Stability of the Cancer Free Equilibrium Point

In this subsection, a proof of the global stability of the Cancer Free Equilibrium Point ε0 is given.

The global stability of the ε0 was done by constructing the Lyapunov function for the Cancer Free

Equilibrium point.

Theorem 5

If R0 ≤ 1 then the Cancer Free Equilibrium Point ε0 of the model equations is globally asymptotically

stable, otherwise unstable if R0 > 1 .

Proof

V (S,E, I,R) = (S−S0)2 +(E −0)2 +(I −0)2 +(R−0)2

= (S−So)2 +E2 + I2 +R2 (3.43)

From equation (3.12) S = Λ

γIτ−µ1
Implying that S > 0 hense positive .It follows that equations (3.13),

(3.14) and (3.15) would also give E = I = R > 0.

The time derivative of equation is (3.43)

dV
dt (S,E, I,R) = 2(S−So)dS

dt +2E dE
dt +2I dI

dt +2RdR
dt

dV
dt (S,E, I,R) = 2(S−So)(Λ− γSIτ −µ1S)+2E(γSIτ −µ2E −σE −βEτ +σβEτ)+2I(βEτ −

σβEτ −µ3I −αIτ −ηIτ)+2R(αIτ +ηIτ +σE −µ4R)

= 2S−2So +2EΛ−2EγSIτ −2Eµ1S+2IγSIτ −2Iµ2E −2IσE −2IβEτ +2IσβEτ +2Rσ Iτ −

2RηIτ +2RσE −2µ4R2

= 2S+2EΛ+2IγSIτ +2IσβEτ +2RαIτ +2RσE −2So −2EγSIτ −2Eµ1S−2Iµ2E −2IσE −

2IβEτ −2RηIτ −2µ4R2

At Cancer Free Equilibrium Point ε0 , E = I = R = 0 hence the equation above becomes

V̇=2(S−So)

For global stability S < So so that V̇ < 0 .If S ≤ So then V̇ ≤ 0 implying that R0 ≤ 1 hence the Cancer

Free Equilibrium Point is globally stable
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3.10.4 Global Stability of the Cancer Endemic Equilibrium Point

In this subsection we prove the global stability of the Cancer Endemic Equilibrium Point ε1 by

constructing the Lyapunov function.

Theorem 6

If R0 > 1 then the Cancer Endemic Equilibrium Point ε1 of the model is globally asymptotically stable

otherwise unstable when R0 < 1.

Proof

Consider the following Lyapunov function V : {(S,E, I,R) ∈ Ω : S,E, I,R > 0}→ R is given by

V (S,E, I,R) = 1
2 [(S−S∗)2 +(E −E∗)2 +(I − I∗)2 +(R−R∗)2]

Differentiating V with respect to t, we get,

V̇(S,E,I,R) = (S−S∗) Ṡ+ (E −E∗) Ė+ (I − I∗)İ + (R−R∗) Ṙ

= (1− S∗
S )Ṡ+ (1− E∗

E )Ė+(1− I∗
I )İ + (1− R∗

R )Ṙ

= (1− S∗
S )(Λ− γSIτ −µ1S)+(1− E∗

E )(γSIτ −µ2E −σE −βEτ +σβEτ)+(1− I∗
I )

(βEτ −σβEτ −µ3I −αIτ −ηIτ)+(1− R∗

R
)(αIτ +ηIτ +σE −µ4R) (3.44)

By considering the model equations (3.12), (3.13), (3.14) and (3.15) at the Cancer Endemic Equilibrium

Point, we have,

Λ = γS∗Iτ +µ1S∗

γS∗Iτ = µ2E∗−σE −βE∗
τ +σβEτ

βEτ −σβEτ = µ3I∗−αIτ −ηIτ

αIτ +ηIτ = µ4R∗−σE∗

Substituting the values of Λ,γS∗Iτ ,βEτ −σβEτ and σ Iτ +ηIτ into (3.43) and simplifying ,we have

= (1− S∗
S )(µ2E∗+σE∗+µ3I∗+σ Iτ +ηIτ +µ1S∗− γSIτ −µ1S)+

(1− E∗

E )(γSIτ −µ2E −σE˘µ3I∗−σ Iτ −ηIτ)+ (1− I∗
I )(µ3I∗−µ3I) +

(1− R∗

R )(µ4R∗−σE∗+σE −µ4R)

Here V̇=0 when (S,E, I,R) = (S∗,E∗, I∗,R∗) otherwise V̇> 0. Therefore the greatest compact invariant

set in {(S,E, I,R) ∈ Ω : V̇> 0 } is the singleton{ε1},where ε1 is the endemic equilibrium point . It

then implies that ε1 is globally asymptotically stable in the interior of the compact set (Ω).
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, using MATLAB software, the numerical simulations were done. The chapter also has a

detailed discussion of the results obtained from the numerical simulation using MATLAB software.

This was done to verify the analytic results obtained in chapter Three. The parameter values used in

this chapter were mostly hypothetical values to help understand the dynamics of the tumour growth.

The analytic solutions in the chapter three were explained using illustrations of analytic results with

particular numerical examples.

4.2 Numerical Simulations and Discussions

The numerical simulations of the equations of the model were determined using the parameters and

their estimated values shown in Table 4.1
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Table 4.1 Table of parameters and values

Parameter Description Value

S(0) Susceptible Population 1000/mm3

E(0) Exposed population 1000 /mm3

I(0) Infected population 500 /mm3

R(0) Removed population 100 /mm3

N(0) Total population 2600 /mm3

γ Rate at which Susceptible cells become exposed by one infectious cell per contact time 0.500 mm3/day

β Rate at which the exposed cells become infectious 0.020 mm3/day

σ Removal rate of exposed cells due to autoimmunity 0.030 mm3/day

η Removal rate of symptomatic cells due to chemotherapy 0.010 mm3/day

Λ Constant influx rate of new susceptible cells 0.020 mm3/day

µ1 Coefficient of Natural mortality rate of Susceptible cells 0.005 /day

µ2 Natural mortality rate of Exposed cells 0.020 /day

µ3 Natural mortality rate of Infective cells 0.050 /day

µ4 Rate of mortality of the cancerous cells 0.010 /day

α Natural removal rate of symptomatic infected cells 0.020 mm3/day

τ Time Delay To be determined
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Figure 4.1 shows a plot of reproduction number against the previously infected tumour cells at

the Cancer Endemic Equilibrium Point (CEEP). From the figure, it can be shown that with increase

in previously infected tumour cells, the viral replication also increases with increase in reproduction

number.

A plot of Reproduction Number (R1) against Previously Infected Tumour Cells (Iτ)

Figure 4.2 shows a plot of reproduction number at the cancer endemic equilibrium point against

the rate at which the susceptible cells become exposed by one infectious cell per contact time. It can be

clearly seen that the reproduction number and the rate at which the susceptible cells become exposed

by one infectious cell per contact time are directly proportional.
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A plot of Reproduction Number (R1) against the probability that Susceptible Cells become exposed by
one infectious cell per contact time (γ)

In Figure 4.3 the results for a plot of the reproduction number at the Cancer Endemic Equilibrium

Point (CEEP) against the natural mortality rate of susceptible cells. It is shows that the rate of mortality

of the susceptible cells increases as the reproduction number increases.
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A plot of Reproduction Number (R1) against Natural Mortality Rate of Susceptible Cells (µ1)

Figure 4.4 shows a plot of the Reproduction number (R0) against the Time delay (τ) in days. From

the graph it’s clear that as the Time delay increases the number of new tumor cells decreases. The

graph presents the comparison of the delay factor and reproduction number. An increase in the delay

time reduces the number of new tumor cells.
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A plot of Reproduction number (R0) against Time Delay (τ) (days)

Figure 4.5 shows a plot of the Reproduction number (R0) against the Number of Tumor Cells.

From the graph it can be seen clearly that there is an increase in the amount of Tumor cells as the

Reproduction Number increases. Also at low replication rate the Number of Tumor cells are lower.
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A plot of the Reproduction Number (R0) against the Number of Tumor Cells

Presented in Figure 4.6 is a plot of the Reproduction number (R0) against the Drug Efficacy. It

shows that as the drug efficacy increases, the reproduction number decreases. This therefore depicts

that chemotherapy plays an important role in reducing the tumour replication for stability to be attained

at R0 < 1.
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A plot of the Reproduction number (R0) against the Drug Efficacy

Figure 4.7 shows a plot of the Proportion of cell population against the Time in days. It gives the

dynamics of the various compartments of the SEIR model with time. From the graph it’s clear that the

number of the susceptible cells are more than the infected cells. The number of infectious cells reduces

due to chemotherapy while at the same time the number of removed cells increases. This dynamics

reduces the number of exposed cells.
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A plot of the Proportion of cell population against the Time in days

Using MATLAB Software and the hypothetical parameter values in table 4.1, the numerical

simulation was done for

R0 =
βΛγe−2λτ (1−σ)

µ1(µ2 +σ +βe−λτ −σβe−λτ )(µ3 +αe−λτ +ηe−λτ )
(4.1)

in which R0 was found to be 0.6667 at the CFEP and 1.1037 at the CEEP.

4.3 Comparison with Published Related Works

In this study a delay differential model with control variables that describe the interaction of the time

delay (incubation), tumor cells and chemotherapy treatment while for Rihan et al. (2014) a delay

differential model with control variables that describes the interactions of immune cells , tumor cells ,
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normal cells and immunochemotherapy was provided. While Rihan et al. (2014) found that the most

important factors controlling tumor growth were the immune cells and normal cells in the presence of

chemotherapy, our model suggests that the time delay (incubation) and timely chemotherapy are the

key parameters to ensure long time tumor eradication.
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CHAPTER FIVE

SUMMARY,CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

The chapter outlines in summary the effects of incubation and chemotherapy on both the Cancer

Free Equilibrium Point (CFEP) and the Cancer Endemic Equilibrium Point (CEEP). Conclusion,

recommendations and suggestions for further research are also discussed.

5.2 Summary

In this research a SEIR model was formulated for tumour growth dynamics using delay differential

equations for the effects of time delay and chemotherapy or drug efficacy on the stability of both the

Cancer Free Equilibrium Point (CFEP) and Cancer Endemic Equilibrium Point (CEEP). These effects

were numerically analyzed using MATLAB DDE23 solver. In Chapter One, an introduction of the

thesis is given starting with background information of the research which is discussed by highlighting

cancer modeling, definition of cancer and types of tumours are also illustrated including a summary

discussion on cancer statistics and its methods of treatment. The definition of Delay Differential

Equations, types of Delay Differential Equations, simulations of delay differential equations and their

analytic solutions are also discussed. Finally, the problem statement for the research, the objectives of

the research and the significance of the research are also given attention in this chapter.

Chapter Two outlined in details the literature review on cancer modeling, methods used, the findings

and limitations of such studies. The research gaps were identified which formed the basis of this

study. Chapter three, outlined the methodology of the research. The SEIR model for the tumour

dynamics, the assumptions of the research and the model equations are also stated in this chapter. The

model preliminary analysis, the determination of the basic reproductive number, computation of the

Cancer Free Equilibrium Point and Cancer Endemic Equilibrium Point and the stability analysis of
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the equilibrium points both local and global were equally discussed in chapter three. In Chapter Four,

numerical simulations were obtained using MATLAB DDE23 for the verification of the analytic results

derived in Chapter Three.

5.3 Conclusions

A SEIR mathematical model governed by Delay Differential Equations was formulated for the effects

of incubation and chemotherapy on tumor growth dynamics.

Both the cancer endemic equilibrium point and cancer free equilibrium point of the model were

computed around which the dynamics of tumor growth was studied.

In line with one of the objectives of the study,the stability of the cancer endemic equilibrium point and

cancer free equilibrium point of the model was examined under medication and time delay.

The numerical simulation was done using Matlab software to establish the numerical value of the

reproduction number at the equilibrium points and to validate the analytic results.For a reduced spread

of infection , the disease free equilibrium point is attained when R0 < 1. From the numerical simulation,

CFEP was found to be stable when R0 was 0.6667 while the CEEP was stable when R1 is 1.1037. The

reproduction number is critical in minimizing the growth of tumour.

5.4 Recommendations

The delay differential equation SEIR mathematical model formulated in this study is recommended

for the study of a disease where there is a considerable post-infection incubation period in which the

exposed is not yet infectious.

It is recommended that in any epidemiological study , both the disease free state and the decease

endemic state be established for ease of disease control. In this study both the cancer endemic

equilibrium point and the cancer free equilibrium point of the model were computed.

The stability of the cancer free equilibrium point is an indication that cancer spread within the body cell

is on a decline hence effectiveness of the medical intervention whereas the stability of cancer endemic

equilibrium point symbolises an upward spread which in turn means medical intervention is necessary.

It is therefore recommended that for any epidemiological study, the stability of the equilibrium points
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should be ascertained.

When R0 value in greater than 0.6667, the spread of cancer within the host is increasing and therefore

the type of medical intervention is either not effective or immediate treatment is required. Below

this value, the spread of cancer within the host is diminishing to a possible extinction of the cancer.

Numerical simulation to determine the numerical value of the reproduction number is therefore

recommended.

5.5 Suggestions for Further Research

This research has not exhausted all the scientific studies on tumor growth dynamics and treatment. The

effects of immune response to tumour growth dynamics were not considered as it has been studied

by some researchers. The model can be extended to include reaction-diffusion effects on the tumour

growth dynamics. Public knowledge through education on pre-disposing factors and early screening

are also possible insights for further research work on tumour growth dynamics. An advancement

for a vaccine therapy against the tumour development and growth may also be considered for future

studies. The recommendation for inclusion of reaction – diffusion equations in the model is because of

a possible spread of tumour cells from one point to other parts of the body.
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APPENDICES

5.6 APPENDIX I : MATLAB Code at the Cancer Free Equilibrium Point

Code for the SEIR model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Set the parameter values

Lambda = 0.02;% constant influx rate of new susceptible cells

gamma = 0.1;% probabilty that susceptible cells infected by one infectious cell per contact time

mu1 = 0.005;% coefficient of natural mortality rate of susceptible cells

mu2 = 0.02;% coefficient of natural mortality rate of Exposed cells

mu3 = 0.05;% coefficient of natural mortality rate of Infective cells

mu4 = 0.01; % coefficient of natural mortality rate of recovered cells

sigma = 0.1; % recovery rate of exposed cells due to autoimmunity

beta = 0.4; % rate at which the exposed cells become infective

alpha = 0.02; % natural recovery rate of symptomatic infected cells

eta = 0.01; % recovery rate of symptomatic cells due to chemotherapy

tau = 1/7; % Average time spent in the infectious stage

% Set the initial conditions

S0 = 0.9; % Initial proportion of susceptible individuals

E0 = 0.05; % Initial proportion of exposed individuals

I0 = 0.05; % Initial proportion of infectious individuals

R0 = 0; % Initial proportion of recovered individuals

y0 = [S0, E0, I0, R0]; % Vector of initial conditions

% Set the time range for simulation

tspan = [0, 365]; % Simulation time range (in days)

% Define the system of differential equations

f = @(t, y) [Lambda - mu1*y(1) - gamma*y(1)*y(3)*tau; ... gamma*y(1)*y(3)*tau - mu2*y(2) -

sigma*y(2) + (1 - sigma)*beta*y(2)*tau; sigma*y(2) - mu3*y(3) - (alpha + eta)*y(3)*tau; ... al-

pha*y(3)*tau + eta*y(3)*tau + sigma*y(2) - mu4*y(4)];

% Solve the system of differential equations numerically using ode45

[t, y] = dde23(f, tspan, y0);
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% Compute the total population N over time

N = y(:, 1) + y(:, 2) + y(:, 3) + y(:, 4);

% Plot the results with a logarithmic y-axis scale

figure;

semilogy(t, y(:, 1), ’b-’, t, y(:, 2), ’r-’, t, y(:, 3), ’g-’, t, y(:, 4), ’m-’);

xlabel(’Time (days)’);

ylabel(’Proportion of individuals’);

legend(’Susceptible’, ’Exposed’, ’Infectious’, ’Recovered’);

title(’SEIR Model’);

%Code for the Ro vs Drug Efficacy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function Ro vs drug efficacy()

% Define parameter values

N = 1000;%Total cell population

Lambda = 0.2; %constant influx rate of new susceptible cells

gamma = 1/14; %probabilty that susceptible cells infected by one infectious cell per contact time

sigma = 1/5.2; %recovery rate of exposed cells due to autoimmunity

alpha = 1/7; %natural recovery rate of symptomatic infected cells7;

%recovery rate of symptomatic cells due to chemotherapy

beta = 1.5; %rate at which the exposed cells become infective

% Define

eta = 1/

range of drug efficacy values to test with higher resolution

efficacy range = 0:0.01:1;

% Define array to store RO values for each drug efficacy

Ro vals = 1 - efficacy range;

% Plot RO vs drug efficacy

plot(efficacy range, Ro vals, ’LineWidth’, 1);

xlabel(’Drug Efficacy’);

ylabel(’Reproduction Number (Ro)’);

title(’Ro vs Drug Efficacy’);
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grid on;

axis([0 1 0 1]);

grid off;

end

%Code for the Ro vs Tumor Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function Ro vs TumorCells()

% Define parameter values

Lambda = 0.03; %constant influx rate of new susceptible cells

gamma = 0.05; %probabilty that susceptible cells infected by one infectious cell per contact time

mu1=0.005;%coefficient of natural mortality rate of susceptible cells

mu2=0.01;%coefficient of natural mortality rate of Exposed cells

mu3=0.01;%coefficient of natural mortality rate of Infective cells

mu4=0.01;%coefficient of natural mortality rate of recovered cells

Sigma=0.1;%recovery rate of exposed cells due to autoimmunity

beta=0.2;%rate at which the exposed cells become infective

alpha=0.005;%natural recovery rate of symptomatic infected cells

eta=0.005;%recovery rate of symptomatic cells due to chemotherapy

% Define range of tumor cell values to test

S vals = 0:0.01:1;

% Define array to store Ro values for each tumor cell value

Ro vals = zeros(size(S vals));

% Loop over each tumor cell value

for i = 1:length(S vals)

% Calculate corresponding values for other variables

N = 1;

E = 0.1;

I = 0.1;

R = 0.8;

S = S vals(i);

beta tau = beta * (S + E + I + R);
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alpha tau = alpha * (S + E + I + R);

eta tau = eta * (S + E + I + R);

lambda tau = Lambda * (S + E + I + R);

% Calculate Ro using current tumor cell value

Ro vals(i) = Ro calculation(N, beta tau, gamma, lambda tau, sigma, alpha tau, eta tau, mu1, mu2, mu3,

mu4);

end

% Plot Ro vs. tumor cells with a limit of 1 on the y-axis

plot(S vals, Ro vals, ’LineWidth’, 2);

xlim([0 1]);

ylim([0 1]);

xlabel(’Tumor Cells’);

ylabel(’Reproduction Number (Ro)’);

title(’Ro vs. Tumor Cells’);

grid off;

end

function Ro = Ro calculation(N, beta tau, gamma, lambda tau, sigma, alpha tau, eta tau, mu1, mu2,

mu3, mu4)

% Calculate Ro using provided equation

Ro = beta tau * gamma / ((mu1 + mu2 + mu3 + mu4 + sigma) * (mu1 + mu4 + lambda tau + sigma +

alpha tau + eta tau));

end

%Code for Ro versus time delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% Parameters

Lambda = 0.25;

gamma = 0.05;

mu1 = 0.02;

mu2 = 0.04;

mu3 = 0.05;

mu4 = 0.02;
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alpha = 0.1;

eta = 0.1;

sigma = 0.3;

beta = 0.35;

% Time delay range

tau = 0:0.5:10;

% Function to calculate R0

R0 = @(tau) (beta * Lambda * gamma * exp(-2 * Lambda * tau) * (1 - sigma)) ./ ... (mu1 * (mu2

+ sigma + beta * exp(-Lambda * tau) - sigma * beta * exp(-Lambda * tau)) .* ... (mu3 + alpha *

exp(-Lambda * tau) + eta * exp(-Lambda * tau)));

% Calculate R0 values

Ro = R0(tau);

% Find Ro values at CEEP greater than 1 and CFEP less than 1

Ro CEEP = Ro(Ro > 1);

Ro CFEP = Ro(Ro < 1);

% Find the highest values of CEEP and CFEP

max CEEP = max(Ro CEEP);

max CFEP = max(Ro CFEP);

% Print the highest values of CEEP and CFEP

fprintf(’Highest value of CEEP: %.2f \ n ’, max CEEP);

fprintf(’Lowest value of CFEP: %.2f\ n’, max CFEP);

% Plot Ro vs TIME DELAY

figure;

plot(tau, Ro,’r’, ’LineWidth’, 1);

xlabel(’Time delay(\tau)’);

ylabel(’Reproduction Number(Ro)’);

title(’Ro versus time delay(\tau)’);

grid off;

ylim([0,max(Ro)*1.0]);
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5.7 APPENDIX II : MATLAB Code: Drug Efficacy Versus Reproductive Ratio

% Function Drug Efficacy Versus Reproductive Ratio

%parameters..................................................................

Lambda=0.04;%constant influx rate of new susceptible cells

gamma=0.9;%probabilty that susceptible cells are infected by one infectious cell per contact time

mu1=0.009;%coefficient of natural mortality rate of susceptible cells

mu2=0.003;%coefficient of natural mortality rate of Exposed cells

mu3=0.004;%coefficient of natural mortality rate of Infective cells

mu4=0.002;%coefficient of natural mortality rate of recovered cells

Sigma=0.03;%recovery rate of exposed cells due to autoimmunity

beta=0.02;%rate at which the exposed cells become infective

alpha=0.01;%natural recovery rate of symptomatic infected cells

eta=0.05;%recovery rate of symptomatic cells due to chemotherapy

I tau=10;

%R1=(mu1-gamma*I tau)/(1-gamma*I tau);

figure;

R1=0:0.5:1;

I tau=0:5:10;

plot(R1,I tau,’b’,’LineWidth’,1)

title(’R 1 versus Previously Infected Tumor Cells (I \ tau)’);

xlabel(’Previously Infected Tumor Cells (I \ tau)’

ylabel(’Reproductive Number (R1)’)

%ylabel(’Reproductive Number (R1)’)

figure;

gamma=0:.5:1

R1=0:0.5:1;

plot(gamma,R1,’g’,’LineWidth’,1);

xlabel(’gamma (\ gamma)’)

ylabel(’Reproductive Number (R1)’)

title(’R1 versus gamma ( \ gamma)’);
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figure;

mu1=0:.005:0.01

R1=0:0.5:1;

plot(mu1,R1,’g’,’LineWidth’,1);

xlabel(’Natural mortality rate of susceptible cells (\ mu1)’)

ylabel(’Reproductive Number (R1)’)

title(’R1 versus Natural mortality rate of susceptible cells(\ mu1)’);
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5.8 APPENDIX III : Publication from the Thesis
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Abstract 

 
The application of Mathematical models in simulating processes that are biological in nature has been in 

effect for a long time. A great number of Mathematical, Computational, Engineering and Physical approaches 

have been administered to several aspects of development of Tumor, with a view of appreciating how cancer 

cell population responds to medical intervention. This research therefore considered a Mathematical model 

for the consequences of incubation and Chemotherapy on Tumor growth dynamics by formulating a 

deterministic S (susceptible), E (exposed), I (infectious), R (recovered) model using Delay differential 

equations. The Delay in this case accounted for the duration between the subjection of a cell to cancer virus 

and the onset of symptomatic disease. Reproduction number (R0) of the model was ascertained using next 

generation matrix approach. The stability analysis of Cancer Free Equilibrium Point (CFEP) of the model was 

investigated. MATLAB computer program was used for numerical simulations to validate the analytic results. 

The investigation and analysis of the consequences of incubation and Chemotherapy on the stability of the 
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equilibrium point was also done. This study of Tumor growth dynamics is significant in that it shall help 

establish the stage and the extent of cancer spread within the body cells. It shall also help develop a better 

drug administration procedure as well as providing mechanistic insights. Parameter values used were mostly 

estimated values. From the numerical analysis, our findings suggest that CFEP is stable when R0 is 0.6667 

otherwise unstable. 

 

 
Keywords: Tumor growth; reproduction number; delay; stability; cancer free equilibrium; chemotherapy. 

 

1 Introduction 
 

Mathematical modeling of biological processes especially on cancer has in recent times received much attention. 

Mathematical models of Biological processes and the associated numerical simulation has reduced the 

complicated and costly experimental procedures [1-3]. It has been adopted by several epidemiologists as one of 

the approaches to study non-communicable diseases. Worldwide, including Africa, cancer is rated second as a 

main cause of mortality behind heart diseases; this is according to World Health Organization (2018). Cancerous 

tumor growth, spread to the adjacent tissues and treatment have been explained by various Mathematical models 

in the past. Terminal illnesses or diseases are conditions which cannot be cured hence leads to the death of the 

affected person. Examples of terminal diseases are Liver disease, HIV, Lung disease, advanced heart disease, 

advanced cancer among others [4-6]. 

 

According to World Health Organization (WHO), 2020, breast, lung, colon, rectum and prostate cancers are the 

most common ones. In this study we examine how Mathematical models can be used to imitate Tumor growth 

as well as cancer medication. 

 

Tumor is an abnormal mass of tissue which may be solid inside or filled with fluid. There are three Tumor types, 

namely benign, premalignant and malignant Tumors. When the development of Tumor cells are restricted to the 

location of emergence, does not spread to other sites of the body, grows slowly and have distinct borders, then 

they are said to be benign Tumors. Such tumors are non-cancerous. Premalignant tumors are those in which cells 

are not yet cancerous but have the potential of becoming cancerous. Finally, when the cells are unusual, grow 

rapidly and can proliferate to other sections of the body, then they are referred to as malignant tumors or 

cancerous cells. To establish if a tumor is cancerous or benign, a fragment of the cells is taken through a biopsy 

procedure by a doctor and then examined. A pathologist then analyzes the biopsy under a microscope. On the 

other hand, cancer is a genetic malady caused by changes to genes that control the way the body cells function, 

how they grow and how they fractionate. Cancer cells diverge from the other cells in different ways. For 

example, their growth takes place even in the absence of the signal initiating the growth, continues growing 

despite the signals stopping their growth. They also attack the surrounding cells of the body among others [7-9]. 

Cancer is regarded as one of the most exhausting illness to treat and hence leads to more deaths than most 

diseases. It’s also noted that combating cancer is crucial for public health, [10-12]. Over the years several 

methods of cancer treatment have been used, these include hormone therapy, surgery, radiotherapy, immune 

therapy and chemotherapy among others. Mathematical epidemiology has contributed to a more in-depth 

understanding of cancerous Tumor growth as a terminal ailment, its effect and possible future forecast about its 

spread in the body and the mechanism of its control and treatment. 

 

Advanced mathematical model for cancer analysis considering time delay was done [11, 13, 14]. The changing 

characteristic of the nonlinear mathematical model which was initially fronted by introducing the delay 

component in the relationship between the tumor cell itself and the body’s defense system. This was done in an 

effort to ensure that the model is more practical. The investigation of the Mathematical model showed that, the 

elimination of the tumor cells entailed a joint effort of both normal cells and the immune system without the 

drug administration. However it was also shown that the immune system of the body does not acknowledge the 

tumor cells immediately so as to give enough feedback time (i.e., the delay term is prolonged), the growth rate 

of the tumor increases hence the system’s immune stability is lost and finally drifts away from the tumor-free 

steady point. As a consequence, the immune–normal cell fails to effect the destruction of the tumor burden. 

 

According to [3, 15, 16] they investigated a mathematical model for chemo-immunotherapy, which is a 

combination of chemotherapy and immunotherapy for brain cancer. The system of equations used included 

nonlinear first-order ODEs. The mathematical model considered the interaction of immune system cells with 
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cancer cells and the treatment. The dynamic variables of the system are immature dendritic cells, immunogenic 

dendritic cells, tolerogenic dendritic cells, naive  -cells, cytotoxic  -cells, proliferating cytotoxic  -cells, cancer 

cells, and chemotherapy medicine. They proposed a new treatment protocol, which was essentially a new 

analytical function that depended on the time interval between treatment and dosage. To investigate the stability 

of the equilibrium points, it was necessary to solve the nonlinear algebraic equation related to the mathematical 

model, which, in this case, was impossible analytically. Hence, they applied the SPVF algorithm to transfer the 

mathematical model to a new coordinate with an explicit hierarchy and divided it into fast and slow subsystems. 

This procedure enabled them to investigate only the fast subsystem, without losing the biological information of 

the original model. They determined all equilibrium points of the model in the new coordinates and their 

stability. The equilibrium points had no biological meaning in the new coordinates; hence, they inversely 

transformed only the stable equilibrium points into the original coordinates of the model. They investigated the 

mathematical model with our proposed treatment protocol, with constant dosage and different time intervals 

between treatments, that is, 7, 14, 28, and 56 days. Thereafter, they compared their analysis results with 

experimental (clinical) data. The optimal treatment was found to correspond to the protocol with a 7day interval 

between treatments. The next step involved the application of the protocol with different dosages and time 

intervals simultaneously. They examined the behaviour of cancer cells when the initial conditions were changed. 

All results were identified to reach a state of equilibrium at approximately the same time. Indeed, this was 

dependent on the treatment, which had been determined to vary in terms of dosage and time.  

 

A model with random noise on the dynamical behaviour of the Tumor and the immune system was developed. 

The study assimilated the consequence of noise into a model for Tumor-immune system with Holling type III 

response functions to cater for the alterations in cell dynamics. It made use of a stochastic Lyapunov function 

together with Ito’s formula, to provide enough constrain for establishing the existing stationary distribution 

results, weak persistence, and elimination of Tumor cells. The stochastic model for Tumor- immune interaction 

was used. The research also showed that the growth of tumor can be reduced by increasing the intensity of the 

noise as a fundamental factor in the existence of immune effectors [17, 18, 19]. 

 

According to [7,20,21] they considered the analysis of a cancer Mathematical model which included the time-

delay in the interactivity amidst the Tumor cells and the immune system of the body and their stimulation 

processes. It analyzed and observed the model dynamics together with changes of crucial restrictions and the 

effect of time delay on anti -Tumor immune reaction. The delay term was included in the model. As a 

consequence, the modified model demonstrated that the system was able to bring about varying responses even 

with the delay term included. In addition, it demonstrated that the oscillations were continuous and couldn’t be 

eliminated through the addition of the delay term.  The numerical simulations and bifurcation analysis indicated 

that a “careful” consideration of the model’s framework has to be determined so that the fixed-state becomes 

less stable. It was shown that the time delay was not a requirement to originate oscillations since such 

oscillations could be generated even in the absence of the delay term.  

 

In this paper, we have formulated a SEIR deterministic mathematical model with delay differential equations 

(DDE) for the investigation of the effects of incubation and chemotherapy on Tumor growth dynamics. In a 

SEIR model the individuals in a population are divided into four sub-populations or compartments. These 

compartments are the susceptible (S), which refers to the healthy Cells which have not yet come into contact 

with the cancer cells. The exposed (E) are the Cells which have come into contact with the Cancer cells but are 

not yet infective or infectious. The infective (I) are those that have become infected with the cancer cells and are 

infectious and the recovered (R) are those that have recovered or removed from the cell population. 

 

2 Methods of Solution 
 

The stability of the model has been approached from Jacobian matrix method of checking stability of Cancer 

Free Equilibrium Point (CFEP) and numerical simulations have been done using MATLAB to validate the 

analytic results. 

 

2.1 Model equations 
 

From the flow chart, the parameters and the model assumptions the tumor dynamics can be modeled using the 

following delay differential equations. 
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The total cell population N, is given as             . 
 

2.2 Model preliminary analysis 
 

The preliminary analysis of the formulated model is given in this section. The analysis includes positivity and 

boundedness of the model solution, calculation of the basic reproductive number, determination and the stability 

analysis of the equilibrium points. Finally, the sensitivity analysis of the basic reproductive number is also done.  

Positivity and boundedness are therefore essential features of an epidemiological study. 

 

2.2.1 Positivity of the solution of the model 

 

The model monitors the cell population in Tumor dynamics, so all its associated parameters must be non-

negative. Positivity of the solution is one of the important features of an epidemiological model. It is therefore 

important to prove that all state variables are non-negative for all time     . Further any solution with positive 

initial values will remain positive for all the time     . Biologically, positivity implies that the population will 

survive a long time. Therefore to check how biologically valid the proposed model is, the positivity of the 

proposed model must be shown. 

 

Theorem 1: Let                                  then it implies that all the variables of the model 

                        will all remain positive for all solutions of the model equations for      

 

The closed region                   
                 

 

  
   is positively invariant set for the model 

equations (2.1), (2.2), (2.3) and (2.4) 

 

Proof 

 

From the model equation (2.1) 

 
  

  
                      

 

Letting           =A, the equation above becomes 

 
  

  
               

 

The integrating factor for the above Ordinary Differential Equation is given as            
 

   
  

  
                

 
 

  
             

 



 

 
 

 

Ogidi et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 31-44, 2023; Article no.JAMCS.100870 
 

 

 
35 

 

Integrating the above equation and substituting the limits yields 

 

                              
 

                                                                                                                                              
 

as              > 0 implying that S(t) is positive 

 

From equation (2.2), (2.3) and (2.4) we can similarly show respectively that 

 

                  
 
                      

 

 

    
        

 
                                                          

 

              
 
                                

 

 

      
 
                                                     

 

              
 
                     

 

 

     
 
                                                                        

 

From the equations (2.5), (2.6), (2.7) and (2.8), since                      and R (t) > 0, it implies that 

the region    is positively invariant and so it is sufficient to consider solution of the model equations. 

 

2.2.2 Boundedness. 

 

This subsection seeks to prove the boundedness of the solutions of the model equations. Since the model deals 

with the cell population, it follows that at any time,    the sum of the cell population of all the compartments 

must be greater than the whole cell population.  

 

Theorem 2: Let the closed region                   
                 

 

  
    is bounded for the model 

equations (2.1), (2.2), (2.3) and (2.4) 

 

Proof 

 

Let                                                                                                                                                          
 

Differentiating (2.9) with respect to   gives  

 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
                                                                                                                                       

 

Substituting (2.1), (2.2), (2.3) and (2.4) into (2.10) yields  

 
  

  
 =                                                                       

         

                                                                                                           

                   

 
  

  
            Where 

 

                                
 

Letting            yields 
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Integrating equation (2.11) gives 

 

 
  

    

 

  

     
 

  

 

 

                               
 

ln (
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Hence      
 

 
 

Which implies that        
 

 
  ,      is bounded and so are     ,    ,     and      of  the model are also 

bounded in the region    

 

2.3 Equilibrium point of the model. 
 

Epidemiological processes basically exhibits two points of equilibrium, points at which there is no change in the 

state of the system. The two points are the disease free equilibrium point and the endemic equilibrium point. We 

considered the Cancer Free Equilibrium Point (CFEP) for this study. The Cancer Free Equilibrium Point occurs 

when there is absence of cancer within the cells. This equilibrium point was obtained by equating the model 

Equations (2.1), (2.2), (2.3) and (2.4) to zero then solving. The stability of the model is then studied around the 

equilibrium point. A system is said to be stable if all the eigenvalues obtained linearizes around the fixed points. 

2.3.1 Cancer free equilibrium point 

 

The Cancer Free Equilibrium Point                  occurs when the infective class is absent and 

consequently the recoveries. It is found by equating the model equations to zero then evaluating. 

 

At the Cancer Free Equilibrium  

 
     

  
 

     

  
 

     

  
 

     

  
                                                                                                                                

 

By substituting Equation (2.13) into the model equations (2.1), (2.2), (2.3) and (2.4) gives 
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If we let      ,Equation (2.14) becomes          and so 

 

   
 

  
                                                                                                                                                                         

 

Equations (2.15), (2.16) and (2.17) reduces to zero since all the infectious, exposed and the recovered sub 

populations are all equal to zero i.e.         

 

Therefore, the Cancer Free Equilibrium Point of the SEIR model is then given by  

 

                  
 

  
        

 

2.4  Basic reproductive number 
 

The basic reproduction number denoted by      is the most significant quantity in disease modeling. It is 

defined as the number of new infection incidences emanating from one infection known as the primary infection 

case in a completely vulnerable population. The reproduction number provides an overall measure of the 

potential for the spread of an infection within a completely susceptible population. Reproduction number also 

gives an elementary and explicit elucidation for the growth and decomposition of an endemic disease. The 

parameter is dependent not only on the transmission coefficient but also on the average duration of 

infectiousness of the disease.  A higher value of the reproduction number (    ) may be interpreted to mean a 

higher therapeutic intervention needed. Such intervention is to reduce the advancement and in the long run do 

away with the disease from the population under study. When         the spread of cancer within the cells will 

reduce and finally die off while when      the infection will persist. 

 

To determine the reproductive number, the dominant or maximum eigenvalue of the next generation matrix is 

computed. The spectral radius of the matrix       gives the reproduction number that is,              where 

  is the spectral radius of the next generation matrix, F is the matrix for the new cancer cells while V is the 

matrix of the transfers of infections from one compartment to another. 

 

The vectors for the infected class and the uninfected class are then identified. The infected classes are     and 

     which are represented by             while the uninfected class are represented by vector             
 

The vector for the new infection rate     
     
 

   .This is the vector for new infections from the susceptible 

sub-population into the exposed sub-population.  

 

The vector for other infections from compartment to another is given as  

 

   
                

                      
  

 

The product of       and       gives the next generation matrix 

 

The matrix     
  

  
 
  
  is the matrix formed by partial derivative of the vector of new infection rates evaluated 

at the Cancer Free Equilibrium Point while the matrix     
  

  
 
  
  is the matrix formed from the partial 

derivative of the vector of other rates which are not new infections evaluated at the Cancer Free Equilibrium 

Point. Therefore 
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Hence  

 

          

  
    and  

 

    
                  

                         
  

 

The inverse     of       is given as 

 

 
 

                                   
 
                 

                             
  

 

  

 
 
 
 
 

 

                 
 

            

                                    

 

                 
 
 
 
 

 

 

 

Therefore      reduces to 

 

         

  
 

 
 
 
 
 

 

                 
 

            

                                    

 

                 
 
 
 
 

 

 

 

   
                    

                                    

      

                
  

  

 

And so 

 

   
                    

                                    
                                                                                     

 

From (2.18), Equation (2.19) becomes 

 

   
             

                                      
 

 

2.5 Stability of the cancer free equilibrium point 
 

The study of the stability of the equilibrium points consider the linearization of the model Equations about both 

the Cancer Free Equilibrium by taking the Jacobian Matrix the model equations. 

 

2.5.1 Local stability of the cancer free equilibrium point 

 

The local stability of the Cancer Free Equilibrium Point being the point where if the system is put somewhere 

nearby the equilibrium point, then it will move itself to the equilibrium point in some time. 

 

Theorem 3: The Cancer Free Equilibrium Point    is locally stable if      whereas    is unstable if      . 
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Proof 

 

The Jacobian matrix at the Cancer Free Equilibrium Point is computed by differentiating each of the equations 

(2.1), (2.2), (2.3) and (2.4) with respect to S, E, I and R and letting        . The matrix is defined as, 

 

    

 
 
 
 
 
            

                            

                               

                 
 
 
 
 

                                                 

  

The associated polynomial is given as             at the Cancer Free Equilibrium Point. Applying (2.18) in 

(2.20) we get  

 

 

 

      
       

   
 

                       
      

   
 

                                 

                  

 

 
                                       

              

Letting          
       

   
                          

      

   
                   

                 ,                                 

 

Equation (2.21) reduces to, 

  

 

      
      
      
      

    

 

On solving we obtain the values of                   as follows 

 

      ,        

   
                       

 
 

 

and  
 

   
                     

 
 

 

The Cancer Free Equilibrium point       in the model equations is locally stable if                and 

unstable if at least one of the              is greater than zero for all                                   being 

positive. The first two eigenvalues         and        , which are real negative values, a sufficient 

condition for local stability. It is also clear that      is less dominant to    .     is therefore the most dormant 

eigen value. Hence 
 

                       

 
                                                                                                                      

 

for the stability of the Cancer Free Equilibrium point 

 

Equation (2.22) yields                                                                                                                             
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which gives 

 

 
      

   
                                                       

 

                    

                                      
   

 

       hence the Cancer Free Equilibrium is stable 

 

3 Main Results 
 

The numerical simulations of the equations of the model were determined using the following parameters and 

their estimated values. 

 

Table 1. Table of parameters and their values 

 
Parameter Description  Value 

S(0) Initial Susceptible population 1000(estimated) 

E(0) Initial Exposed population 500(estimated) 

I(0) Initial Infected population 400(estimated) 

R(0) Initial Recovered population 300(estimated) 

N(0) Initial Total population 2200(estimated) 

γ Rate at which Susceptible cells become exposed by one infectious cell per contact time 0.500(estimated) 

β Rate at which the exposed cells become infectious 0.020(estimated) 

σ Recovery rate of exposed cells due to autoimmunity 0.030(estimated) 

η Recovery rate of symptomatic cells due to chemotherapy 0.010(estimated) 

ᴧ Constant influx rate of new susceptible cells 0.020(estimated) 

   Coefficient of Natural mortality rate of Susceptible cells    0.005(estimated) 

   Natural mortality rate of Exposed cells 0.020(estimated) 

   Natural mortality rate of Infective cells 0.050(estimated) 

   Rate of mortality of the recovered sick cells 0.010(estimated) 

α Natural  recovery rate of symptomatic infected cells 0.020(estimated) 

τ Time Delay To be determined 

 

 
 

Fig. 1. A plot of Reproduction number (  ) against Time Delay (years) ( ) 
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Fig. 1 shows a plot of the Reproduction number (  ) against the Time delay ( ) in years. From the graph it’s 

clear that as the Time delay increases the number of new tumor cells decreases. The graph presents the 

comparison of the delay factor and reproduction number. An increase in the delay time reduces the number of 

new tumor cells. 

 

 
 

Fig. 2. A plot of Reproduction number (  ) against the Number of Tumor Cells 

 

Fig. 2 shows a plot of the Reproduction number (  ) against the Number of Tumor Cells. From the graph it can 

be seen clearly that there is an increase in the amount of Tumor cells as the Reproduction Number increases. 

Also at low replication rate the Number of Tumor cells are lower. 

 

 
 

Fig. 3. A plot of Reproduction number (  ) against the Drug Efficacy 

 

Fig. 3 shows a plot of the Reproduction number (  ) against the Drug Efficacy. It shows that as the drug 

efficacy increases, the reproduction number decreases. This therefore depicts that chemotherapy plays an 

important role in reducing the tumor replication for stability to be attained at      
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Fig. 4. A plot of Proportion of individuals against the Time (days) 

 

Fig 4 shows a plot of the Proportion of individuals against the Time in days. It gives the dynamics of the various 

compartments of the SEIR model with time. From the graph it’s clear that the number of the susceptible cells 

are more than the infected cells. The number of infectious cells reduces due to chemotherapy while at the same 

time the number of recovered cells increases. This dynamics reduces the number of exposed cells.  

4 Summary, Conclusion and Recommendations 
 

4.1 Introduction 
 

The chapter outlines in summary the effects of incubation and chemotherapy on both the Cancer Free 

Equilibrium Point (CFEP).  

 

4.2 Summary 
  

The major aim of this research was to formulate a SEIR model for the Tumor dynamics using delay differential 

equations and then study the effects of time delay and the effects of chemotherapy or drug efficacy on the 

stability of both the Cancer Free Equilibrium Point (CFEP). These effects are analyzed analytically and 

numerically using MATLAB DDE23 solver and assumed parameter values. In Chapter One, an introduction of 

the thesis is given. Starting with background information of the research is discussed by highlighting cancer 

modeling, definition of cancer and types of Tumors are illustrated including a summary discussion on cancer 

statistics and its methods of treatment. The definition of Delay Differential Equations, types of Delay 

Differential Equations, simulations of delay differential equations and their analytic solutions are also discussed. 

Finally, the problem statement for the research, the objectives of the research and the significance of the 

research are also given attention in this chapter. Chapter Two outlines a brief literature cancer modeling, 

methods used, findings and limitations of such studies. Here the research gaps were identified which formed the 

basis of this study. Chapter three, outlines the methodology of the research. The SEIR model for the Tumor 

dynamics, its assumptions and the model equations. The model preliminary analysis, the determination of the 

basic reproductive number, computation of the Cancer Free Equilibrium Point and Cancer Endemic Equilibrium 

Point and the stability analysis of the equilibrium points both local and global were also discussed in this chapter. 

In Chapter Four, numerical simulations were obtained using MATLAB DDE23 and analytic results derived in 

Chapter Three were verified. 
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4.3 Conclusions 
 

The research was a formulation of a Delay Differential Equation of SEIR Tumor growth dynamics model. The 

CFEP was attained when        . Numerical simulation of the model was carried out to validate the analytic 

results. The results show that the CFEP is stable when R0 is 0.6667 otherwise unstable. The reproduction 

number is critical in minimizing the growth of Tumor. The increased educational awareness for early screening 

also helps in early detection for ease of management.  

 

4.4 Recommendations 
 

This research has not exhausted all the scientific studies on Tumor growth dynamics and treatment. The effects 

of immune response to Tumor growth dynamics were not considered. The model can be extended to include 

reaction-diffusion effects on the Tumor growth dynamics. Public knowledge through education on pre-disposing 

factors and early screening are also possible insights for further research work on Tumor growth dynamics.  An 

advancement for a vaccine therapy against the Tumor development and growth should also be considered in 

future studies.   

 

5 Suggestions for Further Research 
 
The research recommends future work should consider inclusion of reaction –diffusion model and the effect of 

the immune response and chemotherapy. This is because of possible spread of Tumor to other parts of the body 

hence reaction-diffusion.  
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