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Let R, = GR(p*", p*) be a Galois maximal subring of R so that R=R,® U® V& W & Y, where U, V, W, and Y are R,/pR, spaces
considered as Ry-modules, generated by the sets {uy, =+, u.}, {vy, -, v/}, {wy, -, wy }, and {y,, -+, y, }, respectively. Then, R isa
completely primary finite ring with a Jacobson radical Z(R) such that (Z(R))’ = (0) and (Z(R))* # (0). The residue field R/Z(R) is
a finite field GF(p") for some prime p and positive integer r. The characteristic of R is p¥, where k is an integer such that 1 <k <5.
In this paper, we study the structures of the unit groups of a commutative completely primary finite ring R with p¥u; =0,
y=2,3,4; pcvj:O, (=23 pw, =0, and py,=0; 1<i<e, 1<j<f, 1<k<g,and 1<I<h

1. Introduction

Completely primary finite rings with identity 1+#0 have
been an active area of research in the recent years probably
because they play a crucial role in the classification of finite
rings. The unit groups of completely primary finite rings
with maximal ideal Z(R) such that (Z(R))’=(0) with
(Z(R))* # (0) have been classified by Chikunji [1-3]. Oduor
and Onyango [4] constructed a class of completely primary
finite rings in which (Z(R))* = (0) with (Z(R))’ # (0) and
determined the structures of their group of units for all the
characteristics of the ring R. Recently, Were et al. [5] gave
a construction of a completely primary finite ring satisfying
the conditions (Z(R))’=(0); (Z(R))*#(0) and further
determined the unit groups restricted to some conditions.
This construction involved idealization of R,-modules,
whose choice was based on Wilson [6]. Were et al. [7] clas-
sified the group of units of five radical zero completely pri-
mary finite rings with variant orders of second Galois ring
module generators. The structure of unit groups for an abe-
lian group have been determined by various techniques.

Ayoub [8] studied groups which possess a particular type
of series called j- diagram and determined the structure of
the subgroups. In [9], Ayoub obtained various results based
on the ideas regarding j-diagrams for the abelian p-groups.
The j-diagram technique has been used by Alabiad and
Alkhamees [10] to determine the structure of unit groups
of a commutative chain ring where (p-1)|k by fixing
Ayoub’s approach and introduced a system of generators
for the unit groups as well as enumerating the generators.
In what follows, R shall denote a finite completely primary
ring, Z(R) its maximal set of zero divisors (including zero).
We shall also denote the coefficient Galois subring GR(p*",
p¥) of characteristic p* and order p* of the ring R by R,.
For the previous related work, we refer to [2, 3, 5, 10, 11-13].

The remaining part of this paper is organized as follows.
In Section 2, we give the construction of five radical zero
completely primary finite rings whose structure of unit
groups are considered in this paper. In Section 3, we investi-
gate and determine the structure of the group of units R* of
R for all characteristics p¥, 1 <k <5, under the restrictions
PYu;=0, ptv; =0, pw, =0, py, =0, where y=2,3,4;§=2,3;
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1<i<e 1<j<f,1<k<g, and 1 <I<h. Finally, in Section
4, we give the conclusion of this research and some areas
which future researchers may dwell on. This is a continua-
tion of the author’s earlier research on the classification of
unit groups of five radical zero commutative completely
primary finite rings.

2. Preliminaries

The following result due to Wilson [6] formed the basis for
the choice of the ring in this work as an R,-module.

Let R be a completely primary finite ring of characteristic
p* with radical Z(R) such that R/Z(R) = GF(p"). Then, there
exists an independent generating set b,,b,, -+, b,, of R as a
left GR(p*", p")-module such that

(1) by=13b,,---,b,, € Z(R)

(2) GR(p™, p")b; is (GR(p*", p), GR(p*", p"))-submodule
of R

This paper considers a specific case of the general con-
struction of five radical zero commutative completely pri-
mary finite rings where the automorphism is the identity
in R, and the ring R is commutative.

2.1. Construction. Let Ry = GR(p"", p¥) be a Galois ring of
order p* and characteristic p* where p is a prime integer, 1
<k<5 and reZ". Suppose U,V,W, and Y are Ry/pR,
-spaces considered R, modules generated by e, f, g, and h
elements, respectively, such that the corresponding generat-
ing sets are {u, - u}, {vi, - veh {w, o w,}, and {y,
s ¥t sothat R=Ry@ U Ve WeY is an additive abe-
lian group. Then, on the additive group, we define multipli-
cation by the following relations:

(i) If k=1, then wuy = upu; =v;, v, = viu; = wy, u;w;
SWil; =yp Wy =y =0, vivy Svpvi =y, viwg=
wv; =0, vy, =y =0, wwp =wpw =0, wy, =
YW =0, yyy=ypy =0

(ii) If k=2, then wuy = uyu; = pro + pu; + v, uv; = vy
=pu;t Wy, UWy = Wield; = PU; + y), Uy = YUy = pU;,

Vivy =vpvi=yp viwg=wv; =0, vy =yv; =0, wy

Wy = wpw; =0, wy = ywe =0, yyp =ypy, =

(iii) If 3<k<5, then wuy =uyu;=p*ro+pu;+v;, u;

=V =p’ry + pu; PV W UW = Wil =p’ry +

pU;+ pwy +yp, wyy =y = pPrg + puy, ViVp=Vpv;=
2 _ _ 12

PPro+pv+yp VW= Wy =pirg +pvi+ pwy, vy

_ _ 2 _ _ .2

=YV =pRro +PY) Wl = Wewy = PPy + pwy, wy
_ _ .2 _ _ .2

V=YW =P 1o + pWe, Yy =YpY1 =P 7

Further wuyuyupmuy =0, wrg=rou;, Vit =ToVj Wil

. P
=Wy, Yito =Ty Where rg € Ry and 1<4,i <e, 1<j,j <
f, 1<kk'<g, 1<,I' <h. From the given multiplication

in R, we see that if ry+ Y ru ,+Z]f-:15jvj+zzzltkwk+
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h / e I f g 4 ho_t
iz, and o+ Yo+ Zj:lsjvj + Do BWi + X2
are any two elements of R, then

e f g h
(”o + Z riu; + Zsj"j + Z Lwy + Z Zl)’l)
i=1 j=1 k=1 I=1
e
!
. r0+Zr Z v]+ Ztkwk+sz
i=1
e
= ror(') +p* Z (rir:n +pR0) + Z [”o”i, + rir(') +pR0} U
im=1 =1
!
Ty +pR0)] Vi

l(’o +PRo)t1I< + (r(l) +PR0) + Z(”i +PR0)5],'
1

i,j

e

f ! !
+ [(ro +pRO)sj +s; (ro +pR0) + Z (”v
=

v,u=1

+

M

k

h

j(rf+pR0)1 w+ ) [(ro *oRo)e Zl(r‘; +pR°)

I=1

+

“

+ 2 (r; +pR, tk+tk(rl'+PR) xil(SKSLijRO)]yP
(1)

where a=1,2,3, or 4 depending on whether Char R, = p?,
p*,p*, or p°. It can be verified that this multiplication turns
R into a commutative ring with identity 1.

Notice that if R, = GR(p", p) where Char R = p, then the
above multiplication reduces to

e f g h
ro+ Z riu; + Zsjvj + Z Law + Zzlyl
i=1 j=1 k=1 I=1
e f g h
! ! ! ! !
| ot Zriui + Zsjvj + z Lwy + sz
i=1 j=1 k=1 I=1

e

f e
Z[}Z{ Kes(n)+ 3 (m;,)}vj

i=1 j=1 v,u=1

+

Mm

|:r0 tk+tk +

=~
I

1

M=

+ {(ro zl + zl +

k K,

Il
—

Since the ring

e f g
R=Ry® ) Ryu;® » Ryv;® ) Rowy
i=1 j=1 k=1 (3)

h
® Z Ryy;(as Ry-module),

I=1

we have its maximal ideal as
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Z(R) =pR, @ZROueBZROveBZROwkEB ZROyl, (4)

i=1 j=1 I=1

and the finite abelian p-group given by

1+Z(R)=1+pR, GBZRuEBZRveBZkaEBZROy,
i=1 j=1 I=1
(5)

The unit groups of R is given by R*, and it can be verified
that

R*=(R"/1+Z(R))x (1+Z(R))=<b> x (1+ Z(R)), (6)

where <b> is a cyclic group of order p" — 1. The structure
problem of R* is reduced to that of 1 + Z(R). Using the ideas
of Raghavendran [11] and Chikunji [1], we classify the unit
groups of the rings constructed in this section.

Proposition 1. Let R be a ring constructed above and of char-
acteristic p with pu, =0, pv; =0, pw; =0, and py,= 0. Then,
its group of units is characterized as follows:
ifp=2.
rye r r\h .
R* = Zo X (Z5) < (25 < (25)", ifp=3,
r € r f T 9 r h :
Zy_; % (Zp) X (Zp) X (Zp) X (Zp) , ifp>3.

(7)

Zy_y % (Zy)" x (25)°,

Proof. See Proposition 3.1 in [5].

3. Main Results

We now investigate the structures of the unit groups of finite
completely primary rings with a maximal ideals Z(R) such
that (Z(R))’ = (0), (Z(R))* # (0) and with the characteris-
tics p¥,1<k<5, under the restrictions p¥u; =0, pcv =0,
pw, =0, py,;=0, where v=2,3,4; {=2,3; 1<i<e, 1<j
<f,1<k<g,and 1<i<h.

Proposition 2. Let R be a ring constructed above and of char-
acteristic p* with p’u; =0, p*v;=0, pw, =0, and py; =0
Then its group of units is characterized as follows:

Zy X Ty x (Zg)° x (Z3) x (Z})", p=2

Zy 1 X2, % (Z;Z) X (Z;Z)f X (Z;)g X (Z;)h, p+2
(8)

Proof. Since R is commutative, R* = <b>- (1 + Z(R)) = <b>
x (1+Z(R)), a direct product of the p-group 1+ Z(R) by
the cyclic group <b>. Then it suffices to determine the
structure of the subgroup 1+ Z(R) of the unit group R*.
Let &, -+, &, be elements of R, with £, =1 so that &, -+, &,

R* =

€ Ry/pR, = GF(p") form a basis for GF(p") regarded as a
vector space over its prime subfield GF(p). We consider
the two cases separately. O

Case 1. p is even. For each t=1,---,r, (1+2&)°=1,
(1+&u)® =1, (1+ Etvj)4 =1, (1+&uw,)* = 1. For nonnega-
tive integers «,, &, ¢, and A, with &, <2, §, <8, ¢, <4, and
A, <2, it is clear that

will imply that a, =2, §,=8, ¢, =4, and A, =2, for all t=
1’ e T

If we set A, ={(1+2&,)" :a=1,2Vt=1,--,r}; B,;={

s .
(1+&u;)" :8=1,---,8Vt=1,---,r}, (i=1,-¢); C;={
(1+&v)? rp=1,,4Vt=1,--,r},(j=1,---f); and D,y
—{(1+&w) "  A=1,2Vt=1,--,r}, (k=1,--, g); we see

that A;, B,;, C,, and Dy are all cyclic subgroups of 1+
Z(R), and these are of the orders inferred from their defini-
tion. Since the intersection of any pair of the cyclic subgroups
<1+28>,<l+&u;>,<1+§v;>,and <1 +§w; > is triv-
ial and that

r

<1+£tui>

H<1+2£t

(10)

ATTTT <1 +&we>
=

coincides with |1 + Z(R)], it follows that

1+Z(R H<1+2£t>xHH<1+£tu>

i=1 t=1

r

f
<11 <1+£tv>xHH<l+Etwk>

=1 t= k=1 t=1

%x@3xmwx@9-

.

n

(11)

Case 2. p is odd. For each t=1,---,r, (1+p€)f =1,
(I+&u) =1, (1+&v) =1, (1+&w)’=1, and
(1+&,9,)F = 1. For nonnegative integers f3,, ,,8,, ¢,, and A,
with B, <p, &, <p% 8, <p* ¢, <p,and A, <p, it is clear that
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will imply that 8, =p, a, =p?, 8, =p*, ¢, =p, and A, =p, for
allt=1,---,r

If we set A, ={(1 +p€t)ﬁ (B=1,pVEt =1, 1} By
= {(1 +ftui)"‘ =1, --~,p2;‘v’t =1, r} (i=1, ...,e); Ct,j
={1 +€sz)6 =1, p2VE=1, 1}, (=1, - f); Dy
={(1+&w)? :@=1,--,pvt=1,--,r},(k=1,---, g); and

Eg={(1+&y) tA=1, o, p¥t=1, 1}, (I=1,, h), we
see that A, B,;, C,;, D;y, and E,; are all cyclic subgroups
of 1+Z(R ), and these are of the orders inferred from their
definition. Since the intersection of any pair of the cyclic
subgroups <1+p§ >, <l+&§u;>, <1+&v;>, <l+{uw;

>, and <1+¢&,y, > is trivial and that

f[<1+p§t> 'ﬁﬁ<1+£tui>

t= i=1 t=1
foor | g _r
ATTTT <v+8vi> | (ITIT <t+&we>| (13)
=1 t=1 k=1 t=1

r

h
ATTIT <1+én>

I=1 t=1

coincides with |1+ Z(R)|, it follows that

1+Z(R H<1+p§t>xHH<1+Etu>

i=1 t=1

r

f
<11 <1+Eth>><HIL[<1

j=1 t=1 k=1 t=1

h r
+&we> x [TT] <1 +80:>

=1 =1
r r € r f r g r h
=z,x(z;) x (2;) x(z;)" < (z;) -
(14)
Proposition 3. Let R be a ring constructed above and of char-

acteristic p* with p’u; =0, p’v;=0, pw, =0, and py;=0.
Then its group of units is characterized as follows:

Zy X Ty x Zy x (L) % (Zp)™ x (23)° x (23)", p=2,

r T € T f r g T h
Zy X T x <sz> x (zpz) x <ZP) x (Zp> . p#2.

(15)

R*=
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Proof. Since R is commutative, R* = <b >+ (1 + Z(R)) = <b>
x (1+Z(R)), a direct product of the p-group 1+ Z(R) by
the cyclic group <b>. Then it suffices to determine the
structure of the subgroup 1+ Z(R) of the unit group R*.
Let &, -+, &, be elements of R, with §; =1 so that &, -+, &,
€ Ry/pR, = GF(p") form a basis for GF(p") regarded as a
vector space over its prime subfield GF(p). We consider
the two cases separately. O

Case 1. p is even. For each t=1,---,r, (1+2§)" =1,

2 2 8
(1+4&,)° = (1+2&u) =1, (L+&u+8§v,)" =1,
(1+&w,)*=1,and (1+&,,)* = 1. For nonnegative integers
Hps Bps & Oy @, and A, with 17, <2, 3, <2, &, <2, 5,<38, ¢,
<2,and A, <2, it is clear that

e r

[T6a+280m) - TT{0+ag)f {1+ 260

ﬁ ﬁ{ (1+ &+ &)™

i=1 t=1

h
{A+&uw)*}- H

t=1 =1 t=1

j

<

r

{a+rem =
(16)

e 1

T
n

will imply that#, =2, 8,=2,&,=2,6,=8,¢,=2,and A, =2,
forallt=1,---,r
If we set A, ={(1+2¢&,)":

51} By={

n=12vt=1,-

(1+48)F 1 B=1,2vt =1, r}; C={(1+2Eu)" :a=1
2Vt =1, 1) (=1, ); Dyyy={(1+Eu+Ev)° 1 8=

G8VE=1,r), (=1, ), (=1, f); E={
(1+&w)? 1 p=1,2Vt=1,-,r},(k=1,---, 9); F, ={
(1+Etyl)’\ A=1,2¥t=1,---,r},(I=1,--, h); we see that

Ap B, Cyjp Dyjjs B and Fy are all cyclic subgroups of 1
+ Z(R), and these are of the orders inferred from their def-
inition. Since the intersection of any pair of the cyclic sub-
groups (1+2&,), (1+4&), (1+2&8u), (1+&u+ fth>>
(1+&uw,), and (1 +¢&,y,) is trivial and that

.
<1+2&u;>
i=1 t=1

ﬁ<1+2£t H<1+4£t
f e r
HHH <l+&u;+&v; >

j=1 i=1 t=1

r

g
ATTTT <1+ &>

k=1 t=1

r

h
H <1+&y,>

I=1 t=1

coincides with |1 + Z(R)|, it follows that
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1+Z(R H<1+2£t>XH<1+4£[>XHH<1

i=1 t=1

f r
+28u;> > [TTTI] <t +&w+&v;>

=1 =1 t=1

e

x ﬁﬁ <l+&w> xHﬁ<1+£tyl>

k=1 t=1 I=1 t=1
(Z)™ x (2)9 % (25)".
(18)

=75 X 7 x (Z})° x

Case 2. p is odd. For each t=1,---,r, (1 +p§t)p2 =1,
(1+&u) =1, (1+&v,) =1, (1+&w)’=1, and
(1+&,,)f =1. For nonnegative integers f3,, &, 8;, ¢,, and
A, with B, <p?, &, <p%, 8, <p* ¢, <p,and A, <p, it is clear
that

will imply that 3, = p%, o, = p?, 8, = p*, ¢, = p, and A, = p, for
allt=1,---,r

If we set A, = {(1+p€)F : B=1,--,p2vt=1,--,r}; B,,
={(1+&u)" ra=1,piVt=1,-1r}, (i=1,-e) C
={(1+Ev)° 1 8=1, -, p¥t =11}, (j= 1, f); Dy
—{(1+Etwk) .go—1,~-,p;‘v’t:1,~-,r},(k:1,~-,g); and
Ey={(1+&y)" i A= 1, pVt =1, 1}, (I= 1, o, ), we

see that A;, B, ;, C, Dt 1> and E,; are all cyclic subgroups of 1
+Z(R), and these are of the orders inferred from their defini-
tion. Since the intersection of any pair of the cyclic subgroups

(L+p&), (L+&u), (1+8v)), (L+&wy), and (1+&y,) is

trivial and that

.
<1+&u;>

H<1+p£t
=1 t=1

foor
. HH <1+&v;>|-

=1 =1

(20)

ﬁﬂ <l+&w,>

k=1

r

h
H <l+&y,>

coincides with |1 + Z(R)|, it follows that

1+Z(R H<1+pEI>XHH<1+£fu>

i=1 t=1

r

f r
xHH<1+£tvj> xHH<1+Etwk>

j=1 t=1 k=1 t=1

< (2:)

r

xﬁH<1+£tyl> =7,

=1 t=1
X (Z;z)f X (Z;)g X (Z;)h.
(21)

Proposition 4. Let R be a ring constructed above and of char-
acteristic p* with p’u; = 0, p*v; = 0, pwy = 0, and py, = 0. Then
its group of units is characterized as follows:

Lo % Ty} Ty x (Z) % (Z) % (27 % (Z3)',  p=2,

Z. ><Z’x(Z’)ex<Z’>f><<Z’>g><(Z’>h +2
pr-1 X L2 P e p p) > PFZ

(22)

R*=

Proof. Since R* =Z,,_; x (1 + Z(R)), it suffices to determine
the structure of 1 + Z(R). Let &, ---, £, be elements of R, with
& =150 that &, -+, € Ry/pR, = GF(p") form a basis for
GF(p") regarded as a vector space over its prime subfield
GE(p). Then the generators with their respective orders
are as indicated below. O

Case 1. piseven; 1<t<r,1<i<e, 1<j<f,1<k<g, 1<l
<h, the generators are 1+ 2, of order 2; 1+ 4&, of order
2; 1+ &u; of order 8 1+§&,v; of order 4; 1+ &w; of order
2;and 1 + &,y, of order 2. The rest of the proof follows a sim-
ilar argument and may be deduced from Proposition 3.

Case 2. pis odd; 1<t<r,1<i<e, 1<j<f,1<k<g, 1<l
< h, the generators are 1 + p&, of order p*; 1+ &,u; of order
p’s 1+&v; of order p* 1+&wy of order p; and 1+&,y; of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 3.

Proposition 5. Let R be a ring constructed above and of char-
acteristic p° with p’u;=0, p’v;=0, pw, =0, and py,=0.
Then its group of units is characterized as follows:

Ly X Ty x Ty} ()" % (Z56)™ x (25)° x (23)", p=2,
C T () < () < (@) < (@) ez
(23)

Proof. Since R* =Z,,_; x (1 + Z(R)), it suffices to determine
the structure of 1+ Z(R). Let &;,---,&, be elements of R,
with &, =1 so that &, ---,&, € Ry/pR, = GF(p") form a basis
for GF(p") regarded as a vector space over its prime subfield
GE(p). Then the generators with their respective orders are
as indicated below. O
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Case 1. piseven; 1<t<r,1<i<e 1<j<f,1<k<g, 1<l
<h, the generators are 1+ 2&, of order 2; 1+ 4&, of order
2; 1+ 2&,u; of order 4; 1 +&,u, + 5th of order 16;1 +&,w,
of order 2; and 1+ &,y, of order 2. The rest of the proof fol-
lows a similar argument and may be deduced from Proposi-
tion 3.

Case 2. pisodd; 1<t<r,1<i<e, 1<j<f,1<k<g, 1<l
< h, the generators are 1 + p&, of order p*; 1+ &,u; of order
P’ 1+&; of order ps 1 +&w, of order p; and 1+&,y, of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 3.

Proposition 6. Let R be a ring constructed above and of char-

acteristic p* with p’u; =0, p°v;=0, pw, =0, and py; =0
Then its group of units is characterized as follows:

Ly X LY X 2 % (Z)° %

Zy % L)y <Z;2>e x (Z;Z)f x (z;)g x (Z;>h, p#2.

(24)

(Z5) x (Zy)? x (Z5)', p=2,
R* =

Proof. Since R is commutative, R* = <b>-(1+ Z(R)) = <b>
x (1+Z(R)), a direct product of the p-group 1+ Z(R) by
the cyclic group <b>. Then it suffices to determine the
structure of the subgroup 1+ Z(R) of the unit group R*.
Let &, -+, &, be elements of R, with §; =1 so that &,---,&,
€ Ry/pR, = GF(p") form a basis for GF(p") regarded as a
vector space over its prime subfield GF(p). We consider
the two cases separately. O

Case 1. p is even. For each t=1,---,r, (1+2&)*=1,

2 2 8
(1+6&,) = (1+28,u)" =1, (1+£tui+£tvj) =1,
(1+&w,)*=1,and (1+&,,)* = 1. For nonnegative integers
N B> & 045 @, and A, with 7, <4, B, <2, a, <2, 8, <8, ¢,
<2,and A, <2, it is clear that

H{ (1+28,)"}- H{ (1+6E,) }
e ﬂ{(l+£tu +&v)) 6‘}

i=1 t=1

h
{ 1+&wy) (Pt} H

1 t=1 =1 t=1

e r

{ (1+2&u,)%}

t=

<

r

{aren}=11)

(25)

St =

=~
Il

will imply that s, =4, 8, =2,a,=2,8,=8,¢,=2,and A, =2,
forallt=1,---,r

If we set A, ={(1+2¢&,)" S4Vt=1,--,r}; B,
= {(1 + 6€t)ﬁ : ﬁ: L2vt=1,--, r}; Ct,i = {(1 + th“i)a
=Lt =11} (i=1,e);  Dyy={(1+E&u+Ev,)°
=1, 8V =1, 1}, (=1, €), (j= 1, f); Epp={
1+&w)? :p=1,2Vt=1,---,r},(k=1,--,9); and F,; =
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{(1 +Etyl))‘ A=1,2Vt=1,---,r}, (I=1,---, h), we see that
Ap By, Cyjy Dyjjs Eyg and Fy are all cyclic subgroups of 1
+ Z(R), and these are of the orders inferred from their def-
inition. Since the intersection of any pair of the cyclic sub-
groups <1+2¢,> <1+6¢& > <1+28u;>,
<I+&u+&v; >, <l+§w >, and <l +§,y,> is trivial
and that

Y

r

HH <1+28u >

i=1 t=1

<l+&u+8&v; >
=1

<

’:1w j_u':\

HH <1+&w,> |- <1+5z)’1
k=1 t=1 =1 t=
(26)
coincides with |1 + Z(R)|, it follows that
1+ Z(R)= [ <1+28> = J] <1+6¢, >
t=1 t=1
e r f e r
< TTI] <1+2&w> <[] <1
i=1 t=1 j=1 i=1 t=1
(27)

g r
+&u;+ 8y > x HH <1+&w,>

k=1 t=1

h r
x [TTI <1 +80>=2 x 25 x (Z})*

=1 t=1

x (Z) x (25)7 x (Z5)".

Case 2. p is odd. For each t=1,--,r, (1 +p§t)p3 =1,
(1+&u)" =1, (1+§v) =1, (1+&w)’=1, and
(1+&,9,)7 =1. For nonnegative integers f3,, &, &,, ¢,, and
A, with B, <p?, &, <p?, 8, <p* ¢, <p,and A, <p, it is clear
that

will imply that B, = p*, &, = p2, 8, = p%, ¢, = p, and A, = p, for
all t=1,---,r

If we set A,={(1+p§) :f=1,p¥t=1 1)
B ={(1+&u)* ca=1pVt=1r}, (i=1-¢)
Ct,jz{(l‘f'Eth)a:8=1,---,p2;Vt=1)...)r})(j=1’...’f);
Dy ={(1+&w)? i @=1,,pVt=1,-,r}, (k=1 g);
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and E;;={(1 +Etyl)’\ cA=1, -, pVE=1,-, 1}, (I=1, -,k
), we see that A, B,;, C,;, D;y, and E, are all cyclic sub-
groups of 1 + Z(R), and these are of the orders inferred from
their definition. Since the intersection of any pair of the
cyclic subgroups (1 +p&,), (1+&u,), (1+ Etvj>, (1+&w,),
and (1 +¢&,y,) is trivial and that

11[<1+p§t> . ﬁﬁ<1+ft”i>
t=1

i=1 t=1

foor g _r

ITIT <1+&v> | HH<1+Efwk> (29)
=1 =1 kel =1

h r

H <1+&y,>

=1 =1

coincides with |1 + Z(R)|, it follows that

1+Z(R H<1+p£f>XHH<1+Et”>

i=1 t=1
r

<1+Etv > xHH<1+£twk>

t= k=1 t=1

::]\

-
I
—

r

r r € r f
I[ <1+&y>=2; x (sz) X (sz)

t=1

< ( )g x (z;)h.

Proposition 7. Let R be a ring constructed above and of char-
acteristic p* with p’u; =0, p*v;=0, pw, =0, and py =
Then its group of units is characterized as follows:

X
s

N

(30)

Zy X Ty} Ty x (Zi) x (Zy) x (Z5)7 x (Z3)",  p=2,

Zy X2 (z};)ex (zlgz)fx (Z;,)gx (z;)h, p#2.
(31)

Proof. Since R* =Z,,_; x (1 + Z(R)), it suffices to determine
the structure of 1+ Z(R). Let &, -+, &, be elements of R,
with & =1 so that £, ---,&, € R)/pR, = GF(p") form a basis
for GF(p") regarded as a vector space over its prime subfield
GE(p). Then the generators with their respective orders are
as indicated below. O

R* =

Case 1. piseven; 1<t<r,1<i<e 1<j<f,1<k<g, 1<l
< h, the generators are 1+ 2¢, of order 4; 1 + 14&, of order
2; 1+&,u; of order 8; 1+&,v; of order 4; 1+ §,w, of order
2;and 1 + &,y, of order 2. The rest of the proof follows a sim-
ilar argument and may be deduced from Proposition 6.

Case 2. pis odd; 1<t<r,1<i<e, 1<j<f,1<k<g, 1<l
< h, the generators are 1 + p&, of order p*; 1+ &,u; of order
p’s 1+&v; of order p* 1+&wy of order p; and 1 +&,y; of

order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 6.

Proposition 8. Let R be a ring constructed above and of char-

acteristic p* with p’u;=0, p’v;=0, pw, =0, and py,=

Then its group of units is characterized as follows:

Ly XL X T % (Z)°

/4 XZrXZreXerXngXZrh 2
1 X L X L P’ P p) > P*Z

(32)

X (Zis) ™ x (Z,)? x (Z5)", p=2,
R* =

Proof. Since R* =Z,,_; x (1 + Z(R)), it suffices to determine
the structure of 1+ Z(R). Let &;,---,&, be elements of R,
with & =1 so that &;,---,&, € Ry/pR, = GF(p") form a basis
for GF(p") regarded as a vector space over its prime subfield
GF(p). Then the generators with their respective orders are
as indicated below. |

Case 1. piseven; 1<t<r,1<i<e 1<j<f,1<k<g, 1<l
< h, the generators are 1+ 2&, of order 4; 1+ 6&, of order
2; 1+2&,u; of order 4; 1 +&,u; + Etvj of order 16;1 +&,w,
of order 2; and 1+ &,y, of order 2. The rest of the proof fol-
lows a similar argument and may be deduced from Proposi-
tion 6.

Case 2. pis odd; 1<t<r,1<i<e, 1<j<f,1<k<g, 1<l
< h, the generators are 1 + p&, of order p*; 1+ &,u; of order

p’s 1+&v; of order p*; 1+&,wy of order p; and 1 +&,y; of

order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 6.

Proposition 9. Let R be a ring constructed above and of char-

acteristic p* with p*u;=0, p’v;=0, pw, =0, and py; =0

Then its group of units is characterized as follows:

Zy X Zyx Ty x (Zi)* x (Z3) x (2)7 % (Z3)', p=2,
r T € r f r 9 r h

Ly X Ly % (Zp“) X (Zp2> X (Zp) X <Zp) , pP#F2.

(33)

R*

n

Proof. Since R* =Z,,_; x (1 + Z(R)), it suffices to determine
the structure of 1+ Z(R). Let &,,---,&, be elements of R,
with & =1 so that &, ---,&, € R)/pR, = GF(p") form a basis
for GF(p") regarded as a vector space over its prime subfield
GE(p). Then the generators with their respective orders are
as indicated below. O

Case 1. piseven; 1<t<r,1<i<e, 1<j<f,1<k<g, 1<l
< h, the generators are 1+ 2, of order 4; 1+ 6&, of order
2; 1+&,u; of order 16; 1 +&,v; of order 4; 1+ §,w; of order
2;and 1 + &,y, of order 2. The rest of the proof follows a sim-
ilar argument and may be deduced from Proposition 6.

Case 2. pis odd; 1<t<r,1<i<e 1<j<f,1<k<g, 1<l
< h, the generators are 1 + p&, of order p*; 1+ &,u; of order
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p* 1+&v; of order p* 1 +&wj of order p; and 1+&,y; of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 6.

Proposition 10. Let R be a ring constructed above and of

characteristic p* with p*u; =0, p*v; =0, pw; =0, and py, =
. Then its group of units is characterized as follows:

Zy X Ly X Ty X (Zig)* ¥ (Z3) < (Z2)" % (Z3)' p=2,

r r € T f r g T h
Z, X T (ZP4) x (sz) x (ZP> x (Zp> . p#2.

(34)

R* =

Proof. Since R* =Z,,_; x (1 + Z(R)), it suffices to determine
the structure of 1+ Z(R). Let &, ---,&, be elements of R,
with & =1 so that £, ---,&, € R)/pR, = GF(p") form a basis
for GF(p") regarded as a vector space over its prime subfield
GF(p). Then the generators with their respective orders are
as indicated below. O

Case 1. piseven; 1<t<r,1<i<e 1<j<f,1<k<g, 1<l
< h, the generators are 1+ 2&, of order 4; 1+ 6&, of order
2; 1+ &,u; of order 16; 1 +¢&,v; of order 8; 1 +§,w; of order
2;and 1 + &,y, of order 2. The rest of the proof follows a sim-
ilar argument and may be deduced from Proposition 6.

Case 2. pis odd; 1<t<r, 1<i<e, 1<j<f,1<k<g, 1<l
< h, the generators are 1 + p&, of order p*; 1+ &,u; of order
P 1+&v; of order ps 1 +&wj of order p; and 1+&,y; of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 6.

Proposition 11. Let R be a ring constructed above and of

characteristic p° with p’u; =0, p°v; =0, pw, = 0, andpy, =
Then its group of units is characterized as follows:

Ly X Ly x L x (Z)°

r r ¢ T f r g T k
Zy X T X <sz> x (sz) x (Zp) x (ZP> . p#2.

(35)

x (Z5) x (25)7 x (25", p=2,
R*=

Proof. Since R is commutative, R* = <b >+ (1 + Z(R)) = <b>
x (1+Z(R)), a direct product of the p-group 1+ Z(R) by
the cyclic group <b>. Then it suffices to determine the
structure of the subgroup 1+ Z(R) of the unit group R*.
Let &, -+, &, be elements of R, with §; =1 so that &, -+, &,
€ Ry/pR, = GF(p") form a basis for GF(p") regarded as a
vector space over its prime subfield GF(p). We consider
the two cases separately. O

Case 1. p is even. For each t=1,---,r, (1+2¢)%=

2 2 8
(1+14¢,)" = (1+28u,)" =1, (1+£tui+£tvj) =1,
(1+&w)* =1, and (1+&,,)* = 1. For nonnegative integers
N> By & Op @, and A, with 17, <8, 3, <2, &, <2, 8,<38, ¢,
<2,and A, <2, it is clear that
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H{ (1+28)") - H{ (1+14E) } HH{ (1+2Eu)% )

t=1 i=1 t=1
e r
TITI{ (1 +&m+ &)™}

1 i=1 t=1

r h r

g
IO &m0 - T {aven™}=)

=1 =1 t=1

bl
Il

—_
-

(36)

will imply that#, =8, 8,=2,a,=2,8,=8,¢,=2,and A, =2
forallt=1,--r

If we set A, = {(1 +2&,)" S 8Vt=1,--, 7} B, =
{(1+148,)F . B=1,2vt=1,--,7};  C,;={(1+2&,u,)"
=L2¥t=1,r} (i=1,e);  Dyy={(1+&u+Ev)°
:0=1,-,8Vt=1,-,r},(i=1,-e),(j=1,f); E={

1+&wp)? 1 @=1,2Vt=1,---,r},(k=1,--,g); and F,; = {
(1+ Ety,)’\ A=1,2Vt=1,---,r},(I=1,---,h), we see that
Ap B, Cyjy Dyjj» Eyyo and Fyj are all cyclic subgroups of 1+

Z(R), and these are of the orders inferred from their defini-
tion. Since the intersection of any pair of the cyclic subgroups
<L+28, >, <1+148, >, <1+28u;>, <l +§u; +§v; >, <1

+&w, >, and <1 +&,y, > is trivial and that

. ﬁﬂ <1+2&u;>

i=1 t=1

: ﬁﬁ <l+&w, >

k=1 t=1

r r
H<1+2£t> -H<1+14£t>
t=1 t=1

f e r
. HHH <l+§tui+ftvj>

j=1 i=1 t=1

h r
AT <t+ém>

=1 t=1

(37)

coincides with |1 + Z(R)|, it follows that

1+Z(R H<1+2€t>XH<1+14Et

e r

f
xﬁﬁ<1+2£tui>xH <1

i=1 t=1 j=1 i=1 t=1

g r
+&u+ &> x T[] <1 +&we>
k=1 t=1
h r
< TTI] <1+%0:>
151 151
=2y} 2y % (23)° % (2) X (2;)7 < (23)".
(38)

or (L+pE )P =1,
(1+&w =1, and

Case 2. p is odd. For each t=1,-
2 2
L+&u)" =1, (1+&v)" =1,
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(1+&,y,)" = 1. For nonnegative integers f,, ,, 8,, ¢,, and A,
with B, <p*, &, <p*, 8, <p* ¢, <p,and A, < p, it is clear that

will imply that f, = p*, &, = p*, 8, =p* ¢, =p, and A, = p, for
allt=1,---,1.

If we set A,={(1+pE)f:B=1,-,pivt=1,--,1}
B,={(1+&u;)" a=1,--,p5Vt=1,---,r}, (i=1-e);
Ci={(1+Ev)° :8=1,,p5¥t =1, 1}, (j= 1, f);
D= {(1+Ea0)” s 9= Lo pi¥t= Lo}, (K= 1, g
and E, = {(1+&y)" i A=1,pVt=1,-,r},(I=1, -, h
), we see that A, B,;, C,;, D,;, and E,; are all cyclic sub-
groups of 1 + Z(R), and these are of the orders inferred from
their definition. Since the intersection of any pair of the
cyclic subgroups <1+ p§, >, <l+&u; >, <1+§v;>, <l +
Ew,>,and <1 +&,y,> is trivial and that

ﬁﬁ <1+&u;>

i=1 t=1

I <t+p8>
t=1

foor g _r
. H <l+&v;> |- HH<1+Efwk> (40)
=1 t=1 k=1 t=1
h r
‘ H <1+&y,>
I=1 t=1

coincides with |1+ Z(R)|, it follows that

1+Z(R)=1£[<l+p£t> xﬁﬁ <1+&u;>
t=1

i=1 t=1

H<1+Etvj>><Hﬁ <1

X
j t=1 k=1 t=1

J

h r
+&w, > x HH <l+&y>

=1 t=1

NZ’ Zr ¢ Zf f Zf’g ZTh
=2 () < (2] < () (%)

(41)

foor g
-1

Proposition 12. Let R be a ring constructed above and of
characteristic p* with pu; = 0, p*v; =0, pw; =0, and py,;=0
. Then its group of units is characterized as follows:

Zy X Zyx Zhx (Zg)° x (Z3) < (Z5)? x (ZL)",  p=2,

Z, <2y x (Zp) x (z;,z)f < (z;)"x (z;,)h, p#2.

(42)

R* =

Proof. Since R* =Z,,_; x (1 + Z(R)), it suffices to determine
the structure of 1+ Z(R). Let &,---,&, be elements of R,
with &, =1 so that &, ---,&, € Ry/pR, = GF(p") form a basis
for GF(p") regarded as a vector space over its prime subfield
GF(p). Then the generators with their respective orders are
as indicated below. O

Case 1. piseven; 1<t<r,1<i<e 1<j<f,1<k<g, 1<l
< h, the generators are 1+ 2&, of order 8; 1 + 14¢&, of order
2; 1+ &u; of order 8 1+§&,v; of order 4; 1 +&w; of order
2;and 1 + &,y, of order 2. The rest of the proof follows a sim-
ilar argument and may be deduced from Proposition 11.

Case 2. pisodd; 1<t<r,1<i<e, 1<j<f,1<k<g, 1<l
< h, the generators are 1+ p&, of order p*; 1 +&,u; of order
P’ 1+&v; of order p 1 +&uwy of order p; and 1+&,y, of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 11.

Proposition 13. Let R be a ring constructed above and of
characteristic p* with p’u; =0, p’v; =0, pw, =0, and py; =0
. Then its group of units is characterized as follows:

Zy X Ly X Ty X (Zy)° % (Zig)™ % (Z5) < (Z)", p=2,

Z., X7 X(Z’)ex(Z’ )fx<zr>gx<z’)h #2
pr-1 Pt P P’ D p)» PF<

(43)

R* =

Proof. Since R* =Z,,_; x (1 + Z(R)), it suffices to determine
the structure of 1+ Z(R). Let &,---,&, be elements of R,
with & =1 so that £, --,&, € R)/pR, = GF(p") form a basis
for GF(p") regarded as a vector space over its prime subfield
GF(p). Then the generators with their respective orders are
as indicated below. O

Case 1. piseven; 1<t<r,1<i<e, 1<j<f,1<k<g, 1<l
< h, the generators are 1+ 2&, of order 8; 1 + 14&, of order
2; 1+ 28,u; of order 4; 1+ §,u; +&,v; of order 16; 1 + §wy of
order 2; and 1 +&,y, of order 2. The rest of the proof follows
a similar argument and may be deduced from Proposition 11.

Case 2. pis odd; 1<t<r,1<i<e, 1<j<f,1<k<g, 1<l
< h, the generators are 1+ p&, of order p*; 1 +&,u; of order
P’ 1+&v; of order p’s 1 +&uwy of order p; and 1+&,y, of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 3.

Proposition 14. Let R be a ring constructed above and of
characteristic p* with p*u; =0, p?v; =0, pw, =0, and py,; =0
. Then its group of units is characterized as follows:

85US017 SUOWILLIOD BATea1D 3edldde aup Aq paueob afe sajoie VO ‘8sn Jo Ss|n. 10} AreiqiT 8UIIUO A1\ UO (SUORIPUOD-PUe-SUBH WD A8 | 1M Afeig 1 [euljuo//SdNL) SUOIPUOD pUe SWLB | 8L 88S *[720z/0T /2] Uo AriqiT8uliuo A8 |IM ‘TEY.98//2202/SSTT OT/I0p/ W0 A8 | 1M Areiq Ul uo//Sdny wo.y papeo|umoq ‘T ‘220z ‘69T



10

Zy X Ly} Ty x (Zig)* x (Zh) x (Z3)? x (Z3)", p=2,

Zy X2 (Z;4)e><( ;z)fx (Z;,)gx (z;)h, p#2.
(44)

R* =

Proof. Since R* =Z,,_; x (1 + Z(R)), it suffices to determine
the structure of 1+ Z(R). Let &,,---,&, be elements of R,
with & =1 so that &, ---,&, € R)/pR, = GF(p") form a basis
for GF(p") regarded as a vector space over its prime subfield
GE(p). Then the generators with their respective orders are
as indicated below. O

Case 1. piseven; 1<t<r,1<i<e 1<j<f,1<k<g, 1<l
< h, the generators are 1+ 2, of order 8; 1+ 14&, of order
2; 1+ &,u; of order 16; 1 +&,v; of order 4; 1 +§,w; of order
2;and 1 +&,y, of order 2. The rest of the proof follows a sim-
ilar argument and may be deduced from Proposition 11.

Case 2. pis odd; 1<t<r, 1<i<e, 1<j<f,1<k<g, 1<l
< h, the generators are 1 + p&, of order p*; 1+ &,u; of order
p* 1+&v; of order p* 1 +&wj of order p; and 1+&,y; of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 11.

Proposition 15. Let R be a ring constructed above and of
characteristic p° withp*u; =0, p’v; =0, pw, = 0, and py, = 0.
Then its group of units is characterized as follows:

Zy X Ty} Ty X (Zg)" X (Zig) ™ < (Z3)7 % (Z3)", p=2,

h
Zy X2 % (z;ﬂ)e x (Z;3>f x <Z;>g x (Z;) . p#2.

(45)

R* =

Proof. Since R* =Z,,_; x (1 + Z(R)), it suffices to determine
the structure of 1+ Z(R). Let &, ---,&, be elements of R,
with &, =1 so that &, ---,&, € Ry/pR, = GF(p") form a basis
for GF(p") regarded as a vector space over its prime subfield
GE(p). Then the generators with their respective orders are
as indicated below. O

Case 1. p is even; 1<t<r,1<i<e, 1<j<f,1<k<g, 1<
1< h, the generators are 1+ 2&, of order 8; 1 + 14¢, of order
2; 1+2&,u; of order 8 1+&u;+&,v; of order 16; 1 +&,wy
of order 2; and 1 + &y, of order 2. The rest of the proof fol-
lows a similar argument and may be deduced from Propo-
sition 11.

Case 2. pis odd; 1<t<r,1<i<e, 1<j<f,1<k<g, 1<l
< h, the generators are 1 + p&, of order p*; 1+ &,u; of order
p* 1+&v; of order p*; 1+&wy of order p; and 1+&,y; of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 11.
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4. Conclusions

The unit groups of some classes of five radical zero commu-
tative completely primary finite rings whose first and second
Galois ring module generators are of order pk k=2,3,4,
have been classified in this work. It is evident that the results
are in piece when p =2 and p > 3. Since the unit groups of
classes of five radical zero commutative completely primary
finite rings in this work have been classified via fundamental
theorem of finitely generated abelian group, the use of j
-diagram technique by References [8-10] is therefore rec-
ommended for possible further study of the unit groups of
such rings.
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