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Let R0 = GRðpkr , pkÞ be a Galois maximal subring of R so that R = R0 ⊕U ⊕ V ⊕W ⊕ Y , where U ,V ,W, and Y are R0/pR0 spaces
considered as R0-modules, generated by the sets fu1,⋯, ueg, fv1,⋯, vf g, fw1,⋯,wgg, and fy1,⋯, yhg, respectively. Then, R is a

completely primary finite ring with a Jacobson radical ZðRÞ such that ðZðRÞÞ5 = ð0Þ and ðZðRÞÞ4 ≠ ð0Þ. The residue field R/ZðRÞ is
a finite field GFðprÞ for some prime p and positive integer r. The characteristic of R is pk, where k is an integer such that 1 ≤ k ≤ 5.
In this paper, we study the structures of the unit groups of a commutative completely primary finite ring R with pψui = 0,
ψ = 2, 3, 4; pζvj = 0, ζ = 2, 3; pwk = 0, and pyl = 0; 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, and 1 ≤ l ≤ h.

1. Introduction

Completely primary finite rings with identity 1 ≠ 0 have
been an active area of research in the recent years probably
because they play a crucial role in the classification of finite
rings. The unit groups of completely primary finite rings
with maximal ideal ZðRÞ such that ðZðRÞÞ3 = ð0Þ with
ðZðRÞÞ2 ≠ ð0Þ have been classified by Chikunji [1–3]. Oduor
and Onyango [4] constructed a class of completely primary
finite rings in which ðZðRÞÞ4 = ð0Þ with ðZðRÞÞ3 ≠ ð0Þ and
determined the structures of their group of units for all the
characteristics of the ring R. Recently, Were et al. [5] gave
a construction of a completely primary finite ring satisfying
the conditions ðZðRÞÞ5 = ð0Þ; ðZðRÞÞ4 ≠ ð0Þ and further
determined the unit groups restricted to some conditions.
This construction involved idealization of R0-modules,
whose choice was based on Wilson [6]. Were et al. [7] clas-
sified the group of units of five radical zero completely pri-
mary finite rings with variant orders of second Galois ring
module generators. The structure of unit groups for an abe-
lian group have been determined by various techniques.

Ayoub [8] studied groups which possess a particular type
of series called j- diagram and determined the structure of
the subgroups. In [9], Ayoub obtained various results based
on the ideas regarding j-diagrams for the abelian p-groups.
The j-diagram technique has been used by Alabiad and
Alkhamees [10] to determine the structure of unit groups
of a commutative chain ring where ðp − 1Þjk by fixing
Ayoub’s approach and introduced a system of generators
for the unit groups as well as enumerating the generators.
In what follows, R shall denote a finite completely primary
ring, ZðRÞ its maximal set of zero divisors (including zero).
We shall also denote the coefficient Galois subring GRðpkr ,
pkÞ of characteristic pk and order pkr of the ring R by R0.
For the previous related work, we refer to [2, 3, 5, 10, 11–13].

The remaining part of this paper is organized as follows.
In Section 2, we give the construction of five radical zero
completely primary finite rings whose structure of unit
groups are considered in this paper. In Section 3, we investi-
gate and determine the structure of the group of units R∗ of
R for all characteristics pk, 1 ≤ k ≤ 5, under the restrictions
pψui = 0, pζvj = 0, pwk = 0, pyl = 0, where ψ = 2, 3, 4; ξ = 2, 3;
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1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, and 1 ≤ l ≤ h. Finally, in Section
4, we give the conclusion of this research and some areas
which future researchers may dwell on. This is a continua-
tion of the author’s earlier research on the classification of
unit groups of five radical zero commutative completely
primary finite rings.

2. Preliminaries

The following result due to Wilson [6] formed the basis for
the choice of the ring in this work as an R0-module.

Let R be a completely primary finite ring of characteristic
pk with radical ZðRÞ such that R/ZðRÞ ≅GFðprÞ. Then, there
exists an independent generating set b1, b2,⋯, bm of R as a
left GRðpkr , prÞ-module such that

(1) b1 = 1 ; b2,⋯, bm ∈ ZðRÞ
(2) GRðpkr , prÞbi is ðGRðpkr , prÞ,GRðpkr , prÞÞ-submodule

of R

This paper considers a specific case of the general con-
struction of five radical zero commutative completely pri-
mary finite rings where the automorphism is the identity
in R0 and the ring R is commutative.

2.1. Construction. Let R0 = GRðpkr , pkÞ be a Galois ring of
order pkr and characteristic pk where p is a prime integer, 1
≤ k ≤ 5 and r ∈ℤ+. Suppose U ,V ,W, and Y are R0/pR0
-spaces considered R0 modules generated by e, f , g, and h
elements, respectively, such that the corresponding generat-
ing sets are fu1,⋯, ueg, fv1,⋯, vf g, fw1,⋯,wgg, and fy1
,⋯, yhg, so that R = R0 ⊕U ⊕V ⊕W ⊕ Y is an additive abe-
lian group. Then, on the additive group, we define multipli-
cation by the following relations:

(i) If k = 1, then uiui′ = ui′ui = vj, uivj = vjui =wk, uiwk

=wkui = yl, uiyl = ylui = 0, vjvj′ = vj′vj = yl, vjwk =
wkvj = 0, vjyl = ylvj = 0, wkwk′ =wk′wk = 0, wkyl =
ylwk = 0, ylyl′ = yl′yl = 0

(ii) If k = 2, then uiui′ = ui′ui = pr0 + pui + vj, uivj = vjui
= pui +wk, uiwk =wkui = pui + yl, uiyl = ylui = pui,
vjvj′ = vj′vj = yl, vjwk =wkvj = 0, vjyl = ylvj = 0, wk

wk′ =wk′wk = 0, wkyl = ylwk = 0, ylyl′ = yl′yl = 0

(iii) If 3 ≤ k ≤ 5, then uiui′ = ui′ui = p2r0 + pui + vj, uivj
= vjui = p2r0 + pui + pvj +wk, uiwk =wkui = p2r0 +
pui + pwk + yl, uiyl = ylui = p2r0 + pui, vjvj′ = vj′vj =
p2r0 + pvj + yl, vjwk =wkvj = p2r0 + pvj + pwk, vjyl
= ylvj = p2r0 + pvj, wkwk′ =wk′wk = p2r0 + pwk, wk

yl = ylwk = p2r0 + pwk, ylyl′ = yl′yl = p2r0

Further uiui′ui′′ui′′′uiiv = 0, uir0 = r0ui, vjr0 = r0vj, wkr0
= r0wk, ylr0 = r0yl, where r0 ∈ R0 and 1 ≤ i, i′ ≤ e, 1 ≤ j, j′ ≤
f , 1 ≤ k, k′ ≤ g, 1 ≤ l, l′ ≤ h. From the given multiplication

in R, we see that if r0 +∑e
i=1riui +∑f

j=1sjvj +∑g
k=1tkwk +

∑h
l=1zlyl and r0′ +∑e

i=1ri′ui +∑f
j=1sj′vj +∑g

k=1tk′wk +∑h
l=1zl′yl

are any two elements of R, then

r0 + 〠
e

i=1
riui + 〠

f

j=1
sjvj + 〠

g

k=1
tkwk + 〠

h

l=1
zlyl

 !

Á r0′ + 〠
e

i=1
ri′ui + 〠

f

j=1
sj′vj + 〠

g

k=1
tk′wk + 〠

h

l=1
zl′yl

 !

= r0r0′ + pa 〠
e

i,m=1
rirm′ + pR0

� �
+ 〠

e

i=1
r0ri′+ rir0′ + pR0

h i
ui

+ 〠
f

j=1
r0 + pR0ð Þsj′+ sj r0′ + pR0

� �
+ 〠

e

ν,μ=1
rνrμ′ + pR0

� �" #
vj

+ 〠
g

k=1

"
r0 + pR0ð Þtk′ + tk r0′ + pR0

� �
+〠

i,j
ri + pR0ð Þsj′

+ sj ri′+ pR0

� �#
wk + 〠

h

l=1

"
r0 + pR0ð Þzl′+ zl r0′ + pR0

� �

+〠
i,k

ri + pR0ð Þtk′ + tk ri′+ pR0

� �
+ 〠

f

κ,τ=1
sκsτ′ + pR0

� �#
yl,

ð1Þ

where a = 1, 2, 3, or 4 depending on whether Char R0 = p2,
p3, p4, or p5. It can be verified that this multiplication turns
R into a commutative ring with identity 1.

Notice that if R0 = GRðpr , pÞ where Char R = p, then the
above multiplication reduces to

r0 + 〠
e

i=1
riui + 〠

f

j=1
sjvj + 〠

g

k=1
tkwk + 〠

h

l=1
zlyl

 !

Á r0′ + 〠
e

i=1
ri′ui + 〠

f

j=1
sj′vj + 〠

g

k=1
tk′wk + 〠

h

l=1
zl′yl

 !

= r0r0′ + 〠
e

i=1
r0ri′+ rir0′
h i

ui + 〠
f

j=1
r0ð Þsj′+ sj r0′

� �
+ 〠

e

ν,μ=1
rνrμ′
� �" #

vj

+ 〠
g

k=1
r0ð Þtk′ + tk r0′

� �
+〠

i,j
rið Þsj′+ sj ri′

� �" #
wk

+ 〠
h

l=1
r0ð Þzl′+ zl r0′

� �
+〠

i,k
rið Þtk′ + tk ri′

� �
+ 〠

f

κ,τ=1
sκsτ′
� �" #

yl:

ð2Þ

Since the ring

R = R0 ⊕ 〠
e

i=1
R0ui ⊕ 〠

f

j=1
R0vj ⊕ 〠

g

k=1
R0wk

⊕ 〠
h

l=1
R0yl asR0‐moduleð Þ,

ð3Þ

we have its maximal ideal as
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Z Rð Þ = pR0 ⊕ 〠
e

i=1
R0ui ⊕ 〠

f

j=1
R0vj ⊕ 〠

g

k=1
R0wk ⊕ 〠

h

l=1
R0yl, ð4Þ

and the finite abelian p-group given by

1 + Z Rð Þ = 1 + pR0 ⊕ 〠
e

i=1
R0ui ⊕ 〠

f

j=1
R0vj ⊕ 〠

g

k=1
R0wk ⊕ 〠

h

l=1
R0yl:

ð5Þ

The unit groups of R is given by R∗, and it can be verified
that

R∗ = R∗/1 + Z Rð Þð Þ × 1 + Z Rð Þð Þ = <b > × 1 + Z Rð Þð Þ, ð6Þ

where <b > is a cyclic group of order pr − 1. The structure
problem of R∗ is reduced to that of 1 + ZðRÞ. Using the ideas
of Raghavendran [11] and Chikunji [1], we classify the unit
groups of the rings constructed in this section.

Proposition 1. Let R be a ring constructed above and of char-
acteristic p with pui = 0, pvj = 0, pwk = 0, and pyl = 0. Then,
its group of units is characterized as follows:

R∗ ≅

ℤ2r−1 × ℤr
8ð Þe × ℤr

2ð Þg, if p = 2,

ℤ3r−1 × ℤr
9ð Þe × ℤr

3ð Þf × ℤr
3ð Þh, if p = 3,

ℤpr−1 × ℤr
p

� �e
× ℤr

p

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, if p > 3:

8>>><
>>>:

ð7Þ

Proof. See Proposition 3.1 in [5].

3. Main Results

We now investigate the structures of the unit groups of finite
completely primary rings with a maximal ideals ZðRÞ such
that ðZðRÞÞ5 = ð0Þ, ðZðRÞÞ4 ≠ ð0Þ and with the characteris-
tics pk, 1 ≤ k ≤ 5, under the restrictions pψui = 0, pζvj = 0,
pwk = 0, pyl = 0, where ψ = 2, 3, 4; ζ = 2, 3; 1 ≤ i ≤ e, 1 ≤ j
≤ f , 1 ≤ k ≤ g, and 1 ≤ l ≤ h.

Proposition 2. Let R be a ring constructed above and of char-
acteristic p2 with p2ui = 0, p2vj = 0, pwk = 0, and pyl = 0.
Then its group of units is characterized as follows:

R∗ ≅
ℤ2r−1 ×ℤr

2 × ℤr
8ð Þe × ℤr

4ð Þf × ℤr
2ð Þg, p = 2,

ℤpr−1 ×ℤr
p × ℤr

p2

� �e
× ℤr

p2

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, p ≠ 2:

8><
>:

ð8Þ

Proof. Since R is commutative, R∗ = <b > ⋅ ð1 + ZðRÞÞ ≅ <b>
× ð1 + ZðRÞÞ, a direct product of the p-group 1 + ZðRÞ by
the cyclic group <b > . Then it suffices to determine the
structure of the subgroup 1 + ZðRÞ of the unit group R∗.
Let ξ1,⋯, ξr be elements of R0 with ξ1 = 1 so that �ξ1,⋯, �ξr

∈ R0/pR0 ≅ GFðprÞ form a basis for GFðprÞ regarded as a
vector space over its prime subfield GFðpÞ. We consider
the two cases separately.

Case 1. p is even. For each t = 1,⋯, r, ð1 + 2ξtÞ2 = 1,
ð1 + ξtuiÞ8 = 1, ð1 + ξtvjÞ4 = 1, ð1 + ξtwkÞ2 = 1. For nonnega-
tive integers αt , δt , φt , and λt with αt ≤ 2, δt ≤ 8, φt ≤ 4, and
λt ≤ 2, it is clear that

Yr
t=1

1 + 2ξtð ÞαtÈ É
⋅
Ye
i=1

Yr
t=1

1 + ξtuið Þδt
n o

⋅
Yf
j=1

Yr
t=1

1 + ξtvj
À Áφt
È É

⋅
Yg
k=1

Yr
t=1

1 + ξtwkð Þλt
n o

= 1f g

ð9Þ

will imply that αt = 2, δt = 8, φt = 4, and λt = 2, for all t =
1,⋯, r.

If we set At = fð1 + 2ξtÞα : α = 1, 2;∀t = 1,⋯, rg; Bt,i = f
ð1 + ξtuiÞδ : δ = 1,⋯, 8;∀t = 1,⋯, rg, ði = 1,⋯, eÞ; Ct,j = f
ð1 + ξtvjÞφ : φ = 1,⋯, 4;∀t = 1,⋯, rg, ðj = 1,⋯, f Þ; and Dt,k
= fð1 + ξtwkÞλ : λ = 1, 2;∀t = 1,⋯, rg, ðk = 1,⋯, gÞ; we see
that At , Bt,i, Ct,j, and Dt,k are all cyclic subgroups of 1 +
ZðRÞ, and these are of the orders inferred from their defini-
tion. Since the intersection of any pair of the cyclic subgroups
<1 + 2ξt > , <1 + ξtui > , <1 + ξtvj > , and <1 + ξtwk > is triv-
ial and that

Yr
t=1

< 1 + 2ξt >
�����

����� ⋅
Ye
i=1

Yr
t=1

< 1 + ξtui >
�����

�����
⋅
Yf
j=1

Yr
t=1

< 1 + ξtvj >
�����

����� ⋅
Yg
k=1

Yr
t=1

< 1 + ξtwk >
�����

�����
ð10Þ

coincides with j1 + ZðRÞj, it follows that

1 + Z Rð Þ =
Yr
t=1

< 1 + 2ξt > ×
Ye
i=1

Yr
t=1

< 1 + ξtui >

×
Yf
j=1

Yr
t=1

< 1 + ξtvj > ×
Yg
k=1

Yr
t=1

< 1 + ξtwk >

≅ℤr
2 × ℤr

8ð Þe × ℤr
4ð Þf × ℤr

2ð Þg:
ð11Þ

Case 2. p is odd. For each t = 1,⋯, r, ð1 + pξtÞp = 1,
ð1 + ξtuiÞp

2 = 1, ð1 + ξtvjÞp
2 = 1, ð1 + ξtwkÞp = 1, and

ð1 + ξtylÞp = 1. For nonnegative integers βt , αt ,δt , φt , and λt
with βt ≤ p, αt ≤ p2, δt ≤ p2, φt ≤ p, and λt ≤ p, it is clear that
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Yr
t=1

1 + pξtð Þβt

n o
⋅
Ye
i=1

Yr
t=1

1 + ξtuið ÞαtÈ É

⋅
Yf
j=1

Yr
t=1

1 + ξtvj
À Áδtn o

⋅
Yg
k=1

Yr
t=1

1 + ξtwkð Þφt
È É

⋅
Yh
l=1

Yr
t=1

1 + ξtylð Þλt
n o

= 1f g

ð12Þ

will imply that βt = p, αt = p2, δt = p2, φt = p, and λt = p, for
all t = 1,⋯, r.

If we set At = fð1 + pξtÞβ : β = 1,⋯, p;∀t = 1,⋯, rg; Bt,i
= fð1 + ξtuiÞα : α = 1,⋯, p2;∀t = 1,⋯, rg ði = 1,⋯, eÞ; Ct,j
= fð1 + ξtvjÞδ : δ = 1,⋯, p2;∀t = 1,⋯, rg, ðj = 1,⋯, f Þ; Dt,k
= fð1 + ξtwkÞφ : φ = 1,⋯, p;∀t = 1,⋯, rg, ðk = 1,⋯, gÞ; and
Et,l = fð1 + ξtylÞλ : λ = 1,⋯, p;∀t = 1,⋯, rg, ðl = 1,⋯, hÞ, we
see that At , Bt,i, Ct,j, Dt,k, and Et,l are all cyclic subgroups
of 1 + ZðRÞ, and these are of the orders inferred from their
definition. Since the intersection of any pair of the cyclic
subgroups <1 + pξt > , <1 + ξtui > , <1 + ξtvj > , <1 + ξtwk

> , and <1 + ξtyl > is trivial and that

Yr
t=1

< 1 + pξt >
�����

����� ⋅
Ye
i=1

Yr
t=1

< 1 + ξtui >
�����

�����
⋅
Yf
j=1

Yr
t=1

< 1 + ξtvj >
�����

����� ⋅
Yg
k=1

Yr
t=1

< 1 + ξtwk >
�����

�����
⋅
Yh
l=1

Yr
t=1

< 1 + ξtyl >
�����

�����

ð13Þ

coincides with j1 + ZðRÞj, it follows that

1 + Z Rð Þ =
Yr
t=1

< 1 + pξt > ×
Ye
i=1

Yr
t=1

< 1 + ξtui >

×
Yf
j=1

Yr
t=1

< 1 + ξtvj > ×
Yg
k=1

Yr
t=1

< 1

+ ξtwk > ×
Yh
l=1

Yr
t=1

< 1 + ξtyl >

≅ℤr
p × ℤr

p2

� �e
× ℤr

p2

� �f
× ℤr

p

� �g
× ℤr

p

� �h
:

ð14Þ

Proposition 3. Let R be a ring constructed above and of char-
acteristic p3 with p2ui = 0, p2vj = 0, pwk = 0, and pyl = 0.
Then its group of units is characterized as follows:

R∗ ≅
ℤ2r−1 ×ℤr

2 ×ℤr
2 × ℤr

2ð Þe × ℤr
8ð Þe+f × ℤr

2ð Þg × ℤr
2ð Þh, p = 2,

ℤpr−1 ×ℤr
p2 × ℤr

p2

� �e
× ℤr

p2

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, p ≠ 2:

8><
>:

ð15Þ

Proof. Since R is commutative, R∗ = <b > ⋅ ð1 + ZðRÞÞ ≅ <b>
× ð1 + ZðRÞÞ, a direct product of the p-group 1 + ZðRÞ by
the cyclic group <b > . Then it suffices to determine the
structure of the subgroup 1 + ZðRÞ of the unit group R∗.
Let ξ1,⋯, ξr be elements of R0 with ξ1 = 1 so that �ξ1,⋯, �ξr
∈ R0/pR0 ≅ GFðprÞ form a basis for GFðprÞ regarded as a
vector space over its prime subfield GFðpÞ. We consider
the two cases separately.

Case 1. p is even. For each t = 1,⋯, r, ð1 + 2ξtÞ2 = 1,
ð1 + 4ξtÞ2 = 1, ð1 + 2ξtuiÞ2 = 1, ð1 + ξtui + ξtvjÞ8 = 1,
ð1 + ξtwkÞ2 = 1, and ð1 + ξtylÞ2 = 1. For nonnegative integers
ηt , βt , αt , δt , φt , and λt with ηt ≤ 2, βt ≤ 2, αt ≤ 2, δt ≤ 8, φt
≤ 2, and λt ≤ 2, it is clear that

Yr
t=1

1 + 2ξtð ÞηtÈ É
⋅
Yr
t=1

1 + 4ξtð Þβt
n o

⋅
Ye
i=1

Yr
t=1

1 + 2ξtuið ÞαtÈ É

⋅
Yf
j=1

Ye
i=1

Yr
t=1

1 + ξtui + ξtvj
À Áδtn o

⋅
Yg
k=1

Yr
t=1

1 + ξtwkð Þφt
È É

⋅
Yh
l=1

Yr
t=1

1 + ξtylð Þλt
n o

= 1f g

ð16Þ

will imply that ηt = 2, βt = 2, αt = 2, δt = 8, φt = 2, and λt = 2,
for all t = 1,⋯, r.

If we set At = fð1 + 2ξtÞη : η = 1, 2;∀t = 1,⋯, rg; Bt = f
ð1 + 4ξtÞβ : β = 1, 2;∀t = 1,⋯, rg; Ct,i = fð1 + 2ξtuiÞα : α = 1
, 2;∀t = 1,⋯, rg, ði = 1,⋯, eÞ; Dt,i,j = fð1 + ξtui + ξtvjÞδ : δ =
1,⋯, 8;∀t = 1,⋯, rg, ði = 1,⋯, eÞ, ðj = 1,⋯, f Þ; Et,k = f
ð1 + ξtwkÞφ : φ = 1, 2;∀t = 1,⋯, rg, ðk = 1,⋯, gÞ; Ft,l = f
ð1 + ξtylÞλ : λ = 1, 2;∀t = 1,⋯, rg, ðl = 1,⋯, hÞ; we see that
At , Bt , Ct,i, Dt,i,j, Et,k, and Ft,l are all cyclic subgroups of 1
+ ZðRÞ, and these are of the orders inferred from their def-
inition. Since the intersection of any pair of the cyclic sub-
groups h1 + 2ξti, h1 + 4ξti, h1 + 2ξtuii, h1 + ξtui + ξtvji,
h1 + ξtwki, and h1 + ξtyli is trivial and that

Yr
t=1

< 1 + 2ξt >
�����

����� ⋅
Yr
t=1

< 1 + 4ξt >
�����

����� ⋅
Ye
i=1

Yr
t=1

< 1 + 2ξtui >
�����

�����
⋅
Yf
j=1

Ye
i=1

Yr
t=1

< 1 + ξtui + ξtvj >
�����

����� ⋅
Yg
k=1

Yr
t=1

< 1 + ξtwk >
�����

�����
⋅
Yh
l=1

Yr
t=1

< 1 + ξtyl >
�����

�����
ð17Þ

coincides with j1 + ZðRÞj, it follows that
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1 + Z Rð Þ =
Yr
t=1

< 1 + 2ξt > ×
Yr
t=1

< 1 + 4ξt > ×
Ye
i=1

Yr
t=1

< 1

+ 2ξtui > ×
Yf
j=1

Ye
i=1

Yr
t=1

< 1 + ξtui + ξtvj >

×
Yg
k=1

Yr
t=1

< 1 + ξtwk > ×
Yh
l=1

Yr
t=1

< 1 + ξtyl >

≅ℤr
2 ×ℤr

2 × ℤr
2ð Þe × ℤr

8ð Þe+f × ℤr
2ð Þg × ℤr

2ð Þh:
ð18Þ

Case 2. p is odd. For each t = 1,⋯, r, ð1 + pξtÞp
2 = 1,

ð1 + ξtuiÞp
2 = 1, ð1 + ξtvjÞp

2 = 1, ð1 + ξtwkÞp = 1, and

ð1 + ξtylÞp = 1. For nonnegative integers βt , αt , δt , φt , and
λt with βt ≤ p2, αt ≤ p2, δt ≤ p2, φt ≤ p, and λt ≤ p, it is clear
that

Yr
t=1

1 + pξtð Þβt

n o
⋅
Ye
i=1

Yr
t=1

1 + ξtuið ÞαtÈ É

⋅
Yf
j=1

Yr
t=1

1 + ξtvj
À Áδtn o

⋅
Yg
k=1

Yr
t=1

1 + ξtwkð Þφt
È É

⋅
Yh
l=1

Yr
t=1

1 + ξtylð Þλt
n o

= 1f g

ð19Þ

will imply that βt = p2, αt = p2, δt = p2, φt = p, and λt = p, for
all t = 1,⋯, r.

If we set At = fð1 + pξtÞβ : β = 1,⋯, p2;∀t = 1,⋯, rg; Bt,i
= fð1 + ξtuiÞα : α = 1,⋯, p2;∀t = 1,⋯, rg, ði = 1,⋯, eÞ; Ct,j
= fð1 + ξtvjÞδ : δ = 1,⋯, p2;∀t = 1,⋯, rg, ðj = 1,⋯, f Þ; Dt,k
= fð1 + ξtwkÞφ : φ = 1,⋯, p;∀t = 1,⋯, rg, ðk = 1,⋯, gÞ; and
Et,l = fð1 + ξtylÞλ : λ = 1,⋯, p;∀t = 1,⋯, rg, ðl = 1,⋯, hÞ, we
see that At , Bt,i, Ct,jDt,k, and Et,l are all cyclic subgroups of 1
+ ZðRÞ, and these are of the orders inferred from their defini-
tion. Since the intersection of any pair of the cyclic subgroups
h1 + pξti, h1 + ξtuii, h1 + ξtvji, h1 + ξtwki, and h1 + ξtyli is
trivial and that

Yr
t=1

< 1 + pξt >
�����

����� ⋅
Ye
i=1

Yr
t=1

< 1 + ξtui >
�����

�����
⋅
Yf
j=1

Yr
t=1

< 1 + ξtvj >
�����

����� ⋅
Yg
k=1

Yr
t=1

< 1 + ξtwk >
�����

�����
⋅
Yh
l=1

Yr
t=1

< 1 + ξtyl >
�����

�����

ð20Þ

coincides with j1 + ZðRÞj, it follows that

1 + Z Rð Þ =
Yr
t=1

< 1 + pξt > ×
Ye
i=1

Yr
t=1

< 1 + ξtui >

×
Yf
j=1

Yr
t=1

< 1 + ξtvj > ×
Yg
k=1

Yr
t=1

< 1 + ξtwk >

×
Yh
l=1

Yr
t=1

< 1 + ξtyl > ≅ℤr
p2 × ℤr

p2

� �e

× ℤr
p2

� �f
× ℤr

p

� �g
× ℤr

p

� �h
:

ð21Þ

Proposition 4. Let R be a ring constructed above and of char-
acteristic p3 with p3ui = 0, p2vj = 0, pwk = 0, and pyl = 0. Then
its group of units is characterized as follows:

R∗ ≅
ℤ2r−1 ×ℤr

2 ×ℤr
2 × ℤr

8ð Þe × ℤr
4ð Þf × ℤr

2ð Þg × ℤr
2ð Þh, p = 2,

ℤpr−1 ×ℤr
p2 × ℤr

p3

� �e
× ℤr

p2

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, p ≠ 2:

8><
>:

ð22Þ

Proof. Since R∗ ≅ℤpr−1 × ð1 + ZðRÞÞ, it suffices to determine
the structure of 1 + ZðRÞ. Let ξ1,⋯, ξr be elements of R0 with
ξ1 = 1 so that �ξ1,⋯, �ξr ∈ R0/pR0 ≅GFðprÞ form a basis for
GFðprÞ regarded as a vector space over its prime subfield
GFðpÞ. Then the generators with their respective orders
are as indicated below.

Case 1. p is even; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + 2ξt of order 2; 1 + 4ξt of order
2; 1 + ξtui of order 8; 1 + ξtvj of order 4; 1 + ξtwk of order
2; and 1 + ξtyl of order 2. The rest of the proof follows a sim-
ilar argument and may be deduced from Proposition 3.

Case 2. p is odd; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + pξt of order p

2; 1 + ξtui of order
p3; 1 + ξtvj of order p

2; 1 + ξtwk of order p; and 1 + ξtyl of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 3.

Proposition 5. Let R be a ring constructed above and of char-
acteristic p3 with p3ui = 0, p3vj = 0, pwk = 0, and pyl = 0.
Then its group of units is characterized as follows:

R∗ ≅
ℤ2r−1 ×ℤr

2 ×ℤr
2 × ℤr

4ð Þe × ℤr
16ð Þe+f × ℤr

2ð Þg × ℤr
2ð Þh, p = 2,

ℤpr−1 ×ℤr
p2 × ℤr

p3

� �e
× ℤr

p3

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, p ≠ 2:

8><
>:

ð23Þ

Proof. Since R∗ ≅ℤpr−1 × ð1 + ZðRÞÞ, it suffices to determine
the structure of 1 + ZðRÞ. Let ξ1,⋯, ξr be elements of R0
with ξ1 = 1 so that �ξ1,⋯, �ξr ∈ R0/pR0 ≅GFðprÞ form a basis
for GFðprÞ regarded as a vector space over its prime subfield
GFðpÞ. Then the generators with their respective orders are
as indicated below.
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Case 1. p is even; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + 2ξt of order 2; 1 + 4ξt of order
2; 1 + 2ξtui of order 4; 1 + ξtui + ξtvj of order 16 ; 1 + ξtwk

of order 2; and 1 + ξtyl of order 2. The rest of the proof fol-
lows a similar argument and may be deduced from Proposi-
tion 3.

Case 2. p is odd; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + pξt of order p

2; 1 + ξtui of order
p3; 1 + ξtvj of order p

3; 1 + ξtwk of order p; and 1 + ξtyl of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 3.

Proposition 6. Let R be a ring constructed above and of char-
acteristic p4 with p2ui = 0, p2vj = 0, pwk = 0, and pyl = 0.
Then its group of units is characterized as follows:

R∗ ≅
ℤ2r−1 ×ℤr

4 ×ℤr
2 × ℤr

2ð Þe × ℤr
8ð Þe+f × ℤr

2ð Þg × ℤr
2ð Þh, p = 2,

ℤpr−1 ×ℤr
p3 × ℤr

p2

� �e
× ℤr

p2

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, p ≠ 2:

8><
>:

ð24Þ

Proof. Since R is commutative, R∗ = <b > ⋅ ð1 + ZðRÞÞ ≅ <b>
× ð1 + ZðRÞÞ, a direct product of the p-group 1 + ZðRÞ by
the cyclic group <b > . Then it suffices to determine the
structure of the subgroup 1 + ZðRÞ of the unit group R∗.
Let ξ1,⋯, ξr be elements of R0 with ξ1 = 1 so that �ξ1,⋯, �ξr
∈ R0/pR0 ≅GFðprÞ form a basis for GFðprÞ regarded as a
vector space over its prime subfield GFðpÞ. We consider
the two cases separately.

Case 1. p is even. For each t = 1,⋯, r, ð1 + 2ξtÞ4 = 1,
ð1 + 6ξtÞ2 = 1, ð1 + 2ξtuiÞ2 = 1, ð1 + ξtui + ξtvjÞ8 = 1,
ð1 + ξtwkÞ2 = 1, and ð1 + ξtylÞ2 = 1. For nonnegative integers
ηt , βt , αt , δt , φt , and λt with ηt ≤ 4, βt ≤ 2, αt ≤ 2, δt ≤ 8, φt
≤ 2, and λt ≤ 2, it is clear that

Yr
t=1

1 + 2ξtð ÞηtÈ É
⋅
Yr
t=1

1 + 6ξtð Þβt

n o
⋅
Ye
i=1

Yr
t=1

1 + 2ξtuið ÞαtÈ É

⋅
Yf
j=1

Ye
i=1

Yr
t=1

1 + ξtui + ξtvj
À Áδtn o

⋅
Yg
k=1

Yr
t=1

1 + ξtwkð Þφt
È É

⋅
Yh
l=1

Yr
t=1

1 + ξtylð Þλt
n o

= 1f g

ð25Þ

will imply that ηt = 4, βt = 2, αt = 2, δt = 8, φt = 2, and λt = 2,
for all t = 1,⋯, r.

If we set At = fð1 + 2ξtÞη : η = 1,⋯, 4;∀t = 1,⋯, rg; Bt

= fð1 + 6ξtÞβ : β = 1, 2;∀t = 1,⋯, rg; Ct,i = fð1 + 2ξtuiÞα : α
= 1, 2;∀t = 1,⋯, rg, ði = 1,⋯, eÞ; Dt,i,j = fð1 + ξtui + ξtvjÞδ
: δ = 1,⋯, 8;∀t = 1,⋯, rg, ði = 1,⋯, eÞ, ðj = 1,⋯, f Þ; Et,k = f
ð1 + ξtwkÞφ : φ = 1, 2;∀t = 1,⋯, rg, ðk = 1,⋯, gÞ; and Ft,l =

fð1 + ξtylÞλ : λ = 1, 2;∀t = 1,⋯, rg, ðl = 1,⋯, hÞ, we see that
At , Bt , Ct,i, Dt,i,j, Et,k, and Ft,l are all cyclic subgroups of 1
+ ZðRÞ, and these are of the orders inferred from their def-
inition. Since the intersection of any pair of the cyclic sub-
groups <1 + 2ξt > , <1 + 6ξt > , <1 + 2ξtui > ,
<1 + ξtui + ξtvj > , <1 + ξtwk > , and <1 + ξtyl > is trivial
and that

Yr
t=1

< 1 + 2ξt >
�����

����� ⋅
Yr
t=1

< 1 + 6ξt >
�����

�����
⋅
Ye
i=1

Yr
t=1

< 1 + 2ξtui >
�����

����� ⋅
Yf
j=1

Ye
i=1

Yr
t=1

< 1 + ξtui + ξtvj >
�����

�����
⋅
Yg
k=1

Yr
t=1

< 1 + ξtwk >
�����

����� ⋅
Yh
l=1

Yr
t=1

< 1 + ξtyl >
�����

�����
ð26Þ

coincides with j1 + ZðRÞj, it follows that

1 + Z Rð Þ =
Yr
t=1

< 1 + 2ξt > ×
Yr
t=1

< 1 + 6ξt >

×
Ye
i=1

Yr
t=1

< 1 + 2ξtui > ×
Yf
j=1

Ye
i=1

Yr
t=1

< 1

+ ξtui + ξtvj > ×
Yg
k=1

Yr
t=1

< 1 + ξtwk >

×
Yh
l=1

Yr
t=1

< 1 + ξtyl > ≅ℤr
4 ×ℤr

2 × ℤr
2ð Þe

× ℤr
8ð Þe+f × ℤr

2ð Þg × ℤr
2ð Þh:

ð27Þ

Case 2. p is odd. For each t = 1,⋯, r, ð1 + pξtÞp
3 = 1,

ð1 + ξtuiÞp
2 = 1, ð1 + ξtvjÞp

2 = 1, ð1 + ξtwkÞp = 1, and

ð1 + ξtylÞp = 1. For nonnegative integers βt , αt , δt , φt , and
λt with βt ≤ p3, αt ≤ p2, δt ≤ p2, φt ≤ p, and λt ≤ p, it is clear
that

Yr
t=1

1 + pξtð Þβt
n o

⋅
Ye
i=1

Yr
t=1

1 + ξtuið ÞαtÈ É

⋅
Yf
j=1

Yr
t=1

1 + ξtvj
À Áδtn o

⋅
Yg
k=1

Yr
t=1

1 + ξtwkð Þφt
È É

⋅
Yh
l=1

Yr
t=1

1 + ξtylð Þλt
n o

= 1f g

ð28Þ

will imply that βt = p3, αt = p2, δt = p2, φt = p, and λt = p, for
all t = 1,⋯, r.

If we set At = fð1 + pξtÞβ : β = 1,⋯, p3;∀t = 1,⋯, rg;
Bt,i = fð1 + ξtuiÞα : α = 1,⋯, p2;∀t = 1,⋯, rg, ði = 1,⋯, eÞ;
Ct,j = fð1 + ξtvjÞδ : δ = 1,⋯, p2;∀t = 1,⋯, rg, ðj = 1,⋯, f Þ;
Dt,k = fð1 + ξtwkÞφ : φ = 1,⋯, p;∀t = 1,⋯, rg, ðk = 1,⋯, gÞ;
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and Et,l = fð1 + ξtylÞλ : λ = 1,⋯, p;∀t = 1,⋯, rg, ðl = 1,⋯, h
Þ, we see that At , Bt,i, Ct,j, Dt,k, and Et,l are all cyclic sub-
groups of 1 + ZðRÞ, and these are of the orders inferred from
their definition. Since the intersection of any pair of the
cyclic subgroups h1 + pξti, h1 + ξtuii, h1 + ξtvji, h1 + ξtwki,
and h1 + ξtyli is trivial and that

Yr
t=1

< 1 + pξt >
�����

����� ⋅
Ye
i=1

Yr
t=1

< 1 + ξtui >
�����

�����
⋅
Yf
j=1

Yr
t=1

< 1 + ξtvj >
�����

����� ⋅
Yg
k=1

Yr
t=1

< 1 + ξtwk >
�����

�����
⋅
Yh
l=1

Yr
t=1

< 1 + ξtyl >
�����

�����

ð29Þ

coincides with j1 + ZðRÞj, it follows that

1 + Z Rð Þ =
Yr
t=1

< 1 + pξt > ×
Ye
i=1

Yr
t=1

< 1 + ξtui >

×
Yf
j=1

Yr
t=1

< 1 + ξtvj > ×
Yg
k=1

Yr
t=1

< 1 + ξtwk >

×
Yh
l=1

Yr
t=1

< 1 + ξtyl > ≅ℤr
p3 × ℤr

p2

� �e
× ℤr

p2

� �f

× ℤr
p

� �g
× ℤr

p

� �h
:

ð30Þ

Proposition 7. Let R be a ring constructed above and of char-
acteristic p4 with p3ui = 0, p2vj = 0, pwk = 0, and pyl = 0.
Then its group of units is characterized as follows:

R∗ ≅
ℤ2r−1 ×ℤr

4 ×ℤr
2 × ℤr

8ð Þe × ℤr
4ð Þf × ℤr

2ð Þg × ℤr
2ð Þh, p = 2,

ℤpr−1 ×ℤr
p3 × ℤr

p3

� �e
× ℤr

p2

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, p ≠ 2:

8><
>:

ð31Þ

Proof. Since R∗ ≅ℤpr−1 × ð1 + ZðRÞÞ, it suffices to determine
the structure of 1 + ZðRÞ. Let ξ1,⋯, ξr be elements of R0
with ξ1 = 1 so that �ξ1,⋯, �ξr ∈ R0/pR0 ≅GFðprÞ form a basis
for GFðprÞ regarded as a vector space over its prime subfield
GFðpÞ. Then the generators with their respective orders are
as indicated below.

Case 1. p is even; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + 2ξt of order 4; 1 + 14ξt of order
2; 1 + ξtui of order 8; 1 + ξtvj of order 4; 1 + ξtwk of order
2; and 1 + ξtyl of order 2. The rest of the proof follows a sim-
ilar argument and may be deduced from Proposition 6.

Case 2. p is odd; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + pξt of order p

3; 1 + ξtui of order
p3; 1 + ξtvj of order p

2; 1 + ξtwk of order p; and 1 + ξtyl of

order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 6.

Proposition 8. Let R be a ring constructed above and of char-
acteristic p4 with p3ui = 0, p3vj = 0, pwk = 0, and pyl = 0.
Then its group of units is characterized as follows:

R∗ ≅
ℤ2r−1 ×ℤr

4 ×ℤr
2 × ℤr

4ð Þe × ℤr
16ð Þe+f × ℤr

2ð Þg × ℤr
2ð Þh, p = 2,

ℤpr−1 ×ℤr
p3 × ℤr

p3

� �e
× ℤr

p3

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, p ≠ 2:

8><
>:

ð32Þ

Proof. Since R∗ ≅ℤpr−1 × ð1 + ZðRÞÞ, it suffices to determine
the structure of 1 + ZðRÞ. Let ξ1,⋯, ξr be elements of R0
with ξ1 = 1 so that �ξ1,⋯, �ξr ∈ R0/pR0 ≅GFðprÞ form a basis
for GFðprÞ regarded as a vector space over its prime subfield
GFðpÞ. Then the generators with their respective orders are
as indicated below.

Case 1. p is even; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + 2ξt of order 4; 1 + 6ξt of order
2; 1 + 2ξtui of order 4; 1 + ξtui + ξtvj of order 16 ; 1 + ξtwk

of order 2; and 1 + ξtyl of order 2. The rest of the proof fol-
lows a similar argument and may be deduced from Proposi-
tion 6.

Case 2. p is odd; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + pξt of order p

3; 1 + ξtui of order
p3; 1 + ξtvj of order p

3; 1 + ξtwk of order p; and 1 + ξtyl of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 6.

Proposition 9. Let R be a ring constructed above and of char-
acteristic p4 with p4ui = 0, p2vj = 0, pwk = 0, and pyl = 0.
Then its group of units is characterized as follows:

R∗ ≅
ℤ2r−1 ×ℤr

4 ×ℤr
2 × ℤr

16ð Þe × ℤr
4ð Þf × ℤr

2ð Þg × ℤr
2ð Þh, p = 2,

ℤpr−1 ×ℤr
p3 × ℤr

p4

� �e
× ℤr

p2

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, p ≠ 2:

8><
>:

ð33Þ

Proof. Since R∗ ≅ℤpr−1 × ð1 + ZðRÞÞ, it suffices to determine
the structure of 1 + ZðRÞ. Let ξ1,⋯, ξr be elements of R0
with ξ1 = 1 so that �ξ1,⋯, �ξr ∈ R0/pR0 ≅GFðprÞ form a basis
for GFðprÞ regarded as a vector space over its prime subfield
GFðpÞ. Then the generators with their respective orders are
as indicated below.

Case 1. p is even; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + 2ξt of order 4; 1 + 6ξt of order
2; 1 + ξtui of order 16; 1 + ξtvj of order 4; 1 + ξtwk of order
2; and 1 + ξtyl of order 2. The rest of the proof follows a sim-
ilar argument and may be deduced from Proposition 6.

Case 2. p is odd; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + pξt of order p

3; 1 + ξtui of order
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p4; 1 + ξtvj of order p
2; 1 + ξtwk of order p; and 1 + ξtyl of

order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 6.

Proposition 10. Let R be a ring constructed above and of
characteristic p4 with p4ui = 0, p3vj = 0, pwk = 0, and pyl = 0
. Then its group of units is characterized as follows:

R∗ ≅
ℤ2r−1 ×ℤr

4 ×ℤr
2 × ℤr

16ð Þe × ℤr
8ð Þf × ℤr

2ð Þg × ℤr
2ð Þh, p = 2,

ℤpr−1 ×ℤr
p3 × ℤr

p4

� �e
× ℤr

p3

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, p ≠ 2:

8><
>:

ð34Þ

Proof. Since R∗ ≅ℤpr−1 × ð1 + ZðRÞÞ, it suffices to determine
the structure of 1 + ZðRÞ. Let ξ1,⋯, ξr be elements of R0
with ξ1 = 1 so that �ξ1,⋯, �ξr ∈ R0/pR0 ≅GFðprÞ form a basis
for GFðprÞ regarded as a vector space over its prime subfield
GFðpÞ. Then the generators with their respective orders are
as indicated below.

Case 1. p is even; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + 2ξt of order 4; 1 + 6ξt of order
2; 1 + ξtui of order 16; 1 + ξtvj of order 8; 1 + ξtwk of order
2; and 1 + ξtyl of order 2. The rest of the proof follows a sim-
ilar argument and may be deduced from Proposition 6.

Case 2. p is odd; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + pξt of order p

3; 1 + ξtui of order
p4; 1 + ξtvj of order p

3; 1 + ξtwk of order p; and 1 + ξtyl of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 6.

Proposition 11. Let R be a ring constructed above and of
characteristic p5 with p2ui = 0, p2vj = 0, pwk = 0, andpyl = 0.
Then its group of units is characterized as follows:

R∗ ≅
ℤ2r−1 ×ℤr

8 ×ℤr
2 × ℤr

2ð Þe × ℤr
8ð Þe+f × ℤr

2ð Þg × ℤr
2ð Þh, p = 2,

ℤpr−1 ×ℤr
p4 × ℤr

p2

� �e
× ℤr

p2

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, p ≠ 2:

8><
>:

ð35Þ

Proof. Since R is commutative, R∗ = <b > ⋅ ð1 + ZðRÞÞ ≅ <b>
× ð1 + ZðRÞÞ, a direct product of the p-group 1 + ZðRÞ by
the cyclic group <b > . Then it suffices to determine the
structure of the subgroup 1 + ZðRÞ of the unit group R∗.
Let ξ1,⋯, ξr be elements of R0 with ξ1 = 1 so that �ξ1,⋯, �ξr
∈ R0/pR0 ≅GFðprÞ form a basis for GFðprÞ regarded as a
vector space over its prime subfield GFðpÞ. We consider
the two cases separately.

Case 1. p is even. For each t = 1,⋯, r, ð1 + 2ξtÞ8 = 1,
ð1 + 14ξtÞ2 = 1, ð1 + 2ξtuiÞ2 = 1, ð1 + ξtui + ξtvjÞ8 = 1,
ð1 + ξtwkÞ2 = 1, and ð1 + ξtylÞ2 = 1. For nonnegative integers
ηt , βt , αt , δt , φt , and λt with ηt ≤ 8, βt ≤ 2, αt ≤ 2, δt ≤ 8, φt
≤ 2, and λt ≤ 2, it is clear that

Yr
t=1

1 + 2ξtð ÞηtÈ É
⋅
Yr
t=1

1 + 14ξtð Þβt

n o
⋅
Ye
i=1

Yr
t=1

1 + 2ξtuið ÞαtÈ É

⋅
Yf
j=1

Ye
i=1

Yr
t=1

1 + ξtui + ξtvj
À Áδtn o

⋅
Yg
k=1

Yr
t=1

1 + ξtwkð Þφt
È É

⋅
Yh
l=1

Yr
t=1

1 + ξtylð Þλt
n o

= 1f g

ð36Þ

will imply that ηt = 8, βt = 2, αt = 2, δt = 8, φt = 2, and λt = 2
for all t = 1,⋯, r.

If we set At = fð1 + 2ξtÞη : η = 1,⋯, 8;∀t = 1,⋯, rg; Bt =
fð1 + 14ξtÞβ : β = 1, 2;∀t = 1,⋯, rg; Ct,i = fð1 + 2ξtuiÞα : α
= 1, 2;∀t = 1,⋯, rg, ði = 1,⋯, eÞ; Dt,i,j = fð1 + ξtui + ξtvjÞδ
: δ = 1,⋯, 8;∀t = 1,⋯, rg, ði = 1,⋯, eÞ, ðj = 1,⋯, f Þ; Et,k = f
ð1 + ξtwkÞφ : φ = 1, 2;∀t = 1,⋯, rg, ðk = 1,⋯, gÞ; and Ft,l = f
ð1 + ξtylÞλ : λ = 1, 2;∀t = 1,⋯, rg, ðl = 1,⋯, hÞ, we see that
At , Bt , Ct,i, Dt,i,j, Et,k, and Ft,l are all cyclic subgroups of 1 +
ZðRÞ, and these are of the orders inferred from their defini-
tion. Since the intersection of any pair of the cyclic subgroups
<1 + 2ξt > , <1 + 14ξt > , <1 + 2ξtui > , <1 + ξtui + ξtvj > , <1
+ ξtwk > , and <1 + ξtyl > is trivial and that

Yr
t=1

< 1 + 2ξt >
�����

����� ⋅
Yr
t=1

< 1 + 14ξt >
�����

����� ⋅
Ye
i=1

Yr
t=1

< 1 + 2ξtui >
�����

�����
⋅
Yf
j=1

Ye
i=1

Yr
t=1

< 1 + ξtui + ξtvj >
�����

����� ⋅
Yg
k=1

Yr
t=1

< 1 + ξtwk >
�����

�����
⋅
Yh
l=1

Yr
t=1

< 1 + ξtyl >
�����

�����
ð37Þ

coincides with j1 + ZðRÞj, it follows that

1 + Z Rð Þ =
Yr
t=1

< 1 + 2ξt > ×
Yr
t=1

< 1 + 14ξt >

×
Ye
i=1

Yr
t=1

< 1 + 2ξtui > ×
Yf
j=1

Ye
i=1

Yr
t=1

< 1

+ ξtui + ξtvj > ×
Yg
k=1

Yr
t=1

< 1 + ξtwk >

×
Yh
l=1

Yr
t=1

< 1 + ξtyl >

≅ℤr
8 ×ℤr

2 × ℤr
2ð Þe × ℤr

8ð Þe+f × ℤr
2ð Þg × ℤr

2ð Þh:
ð38Þ

Case 2. p is odd. For each t = 1,⋯, r, ð1 + pξtÞp
4 = 1,

ð1 + ξtuiÞp
2 = 1, ð1 + ξtvjÞp

2 = 1, ð1 + ξtwkÞp = 1, and
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ð1 + ξtylÞp = 1. For nonnegative integers βt , αt , δt , φt , and λt
with βt ≤ p4, αt ≤ p2, δt ≤ p2, φt ≤ p, and λt ≤ p, it is clear that

Yr
t=1

1 + pξtð Þβt

n o
⋅
Ye
i=1

Yr
t=1

1 + ξtuið ÞαtÈ É

⋅
Yf
j=1

Yr
t=1

1 + ξtvj
À Áδtn o

⋅
Yg
k=1

Yr
t=1

1 + ξtwkð ÞφtÈ É

⋅
Yh
l=1

Yr
t=1

1 + ξtylð Þλt
n o

= 1f g

ð39Þ

will imply that βt = p4, αt = p2, δt = p2, φt = p, and λt = p, for
all t = 1,⋯, r.

If we set At = fð1 + pξtÞβ : β = 1,⋯, p4;∀t = 1,⋯, rg;
Bt,i = fð1 + ξtuiÞα : α = 1,⋯, p2;∀t = 1,⋯, rg, ði = 1,⋯, eÞ;
Ct,j = fð1 + ξtvjÞδ : δ = 1,⋯, p2;∀t = 1,⋯, rg, ðj = 1,⋯, f Þ;
Dt,k = fð1 + ξtwkÞφ : φ = 1,⋯, p;∀t = 1,⋯, rg, ðk = 1,⋯, gÞ;
and Et,l = fð1 + ξtylÞλ : λ = 1,⋯, p;∀t = 1,⋯, rg, ðl = 1,⋯, h
Þ, we see that At , Bt,i, Ct,j, Dt,k, and Et,l are all cyclic sub-
groups of 1 + ZðRÞ, and these are of the orders inferred from
their definition. Since the intersection of any pair of the
cyclic subgroups <1 + pξt > , <1 + ξtui > , <1 + ξtvj > , <1 +
ξtwk > , and <1 + ξtyl > is trivial and that

Yr
t=1

< 1 + pξt >
�����

����� ⋅
Ye
i=1

Yr
t=1

< 1 + ξtui >
�����

�����
⋅
Yf
j=1

Yr
t=1

< 1 + ξtvj >
�����

����� ⋅
Yg
k=1

Yr
t=1

< 1 + ξtwk >
�����

�����
⋅
Yh
l=1

Yr
t=1

< 1 + ξtyl >
�����

�����

ð40Þ

coincides with j1 + ZðRÞj, it follows that

1 + Z Rð Þ =
Yr
t=1

< 1 + pξt > ×
Ye
i=1

Yr
t=1

< 1 + ξtui >

×
Yf
j=1

Yr
t=1

< 1 + ξtvj > ×
Yg
k=1

Yr
t=1

< 1

+ ξtwk > ×
Yh
l=1

Yr
t=1

< 1 + ξtyl >

≅ℤr
p4 × ℤr

p2

� �e
× ℤr

p2

� �f
× ℤr

p

� �g
× ℤr

p

� �h
:

ð41Þ

Proposition 12. Let R be a ring constructed above and of
characteristic p5 with p3ui = 0, p2vj = 0, pwk = 0, and pyl = 0
. Then its group of units is characterized as follows:

R∗ ≅
ℤ2r−1 ×ℤr

8 ×ℤr
2 × ℤr

8ð Þe × ℤr
4ð Þf × ℤr

2ð Þg × ℤr
2ð Þh, p = 2,

ℤpr−1 ×ℤr
p4 × ℤr

p3

� �e
× ℤr

p2

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, p ≠ 2:

8><
>:

ð42Þ

Proof. Since R∗ ≅ℤpr−1 × ð1 + ZðRÞÞ, it suffices to determine
the structure of 1 + ZðRÞ. Let ξ1,⋯, ξr be elements of R0
with ξ1 = 1 so that �ξ1,⋯, �ξr ∈ R0/pR0 ≅GFðprÞ form a basis
for GFðprÞ regarded as a vector space over its prime subfield
GFðpÞ. Then the generators with their respective orders are
as indicated below.

Case 1. p is even; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + 2ξt of order 8; 1 + 14ξt of order
2; 1 + ξtui of order 8; 1 + ξtvj of order 4; 1 + ξtwk of order
2; and 1 + ξtyl of order 2. The rest of the proof follows a sim-
ilar argument and may be deduced from Proposition 11.

Case 2. p is odd; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + pξt of order p

4; 1 + ξtui of order
p3; 1 + ξtvj of order p

2; 1 + ξtwk of order p; and 1 + ξtyl of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 11.

Proposition 13. Let R be a ring constructed above and of
characteristic p5 with p3ui = 0, p3vj = 0, pwk = 0, and pyl = 0
. Then its group of units is characterized as follows:

R∗ ≅
ℤ2r−1 ×ℤr

8 ×ℤr
2 × ℤr

4ð Þe × ℤr
16ð Þe+f × ℤr

2ð Þg × ℤr
2ð Þh, p = 2,

ℤpr−1 ×ℤr
p4 × ℤr

p3

� �e
× ℤr

p3

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, p ≠ 2:

8><
>:

ð43Þ

Proof. Since R∗ ≅ℤpr−1 × ð1 + ZðRÞÞ, it suffices to determine
the structure of 1 + ZðRÞ. Let ξ1,⋯, ξr be elements of R0
with ξ1 = 1 so that �ξ1,⋯, �ξr ∈ R0/pR0 ≅GFðprÞ form a basis
for GFðprÞ regarded as a vector space over its prime subfield
GFðpÞ. Then the generators with their respective orders are
as indicated below.

Case 1. p is even; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + 2ξt of order 8; 1 + 14ξt of order
2; 1 + 2ξtui of order 4; 1 + ξtui + ξtvj of order 16; 1 + ξtwk of
order 2; and 1 + ξtyl of order 2. The rest of the proof follows
a similar argument and may be deduced from Proposition 11.

Case 2. p is odd; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + pξt of order p

4; 1 + ξtui of order
p3; 1 + ξtvj of order p

3; 1 + ξtwk of order p; and 1 + ξtyl of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 3.

Proposition 14. Let R be a ring constructed above and of
characteristic p5 with p4ui = 0, p2vj = 0, pwk = 0, and pyl = 0
. Then its group of units is characterized as follows:
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R∗ ≅
ℤ2r−1 ×ℤr

8 ×ℤr
2 × ℤr

16ð Þe × ℤr
4ð Þf × ℤr

2ð Þg × ℤr
2ð Þh, p = 2,

ℤpr−1 ×ℤr
p4 × ℤr

p4

� �e
× ℤr

p2

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, p ≠ 2:

8><
>:

ð44Þ

Proof. Since R∗ ≅ℤpr−1 × ð1 + ZðRÞÞ, it suffices to determine
the structure of 1 + ZðRÞ. Let ξ1,⋯, ξr be elements of R0
with ξ1 = 1 so that �ξ1,⋯, �ξr ∈ R0/pR0 ≅GFðprÞ form a basis
for GFðprÞ regarded as a vector space over its prime subfield
GFðpÞ. Then the generators with their respective orders are
as indicated below.

Case 1. p is even; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + 2ξt of order 8; 1 + 14ξt of order
2; 1 + ξtui of order 16; 1 + ξtvj of order 4; 1 + ξtwk of order
2; and 1 + ξtyl of order 2. The rest of the proof follows a sim-
ilar argument and may be deduced from Proposition 11.

Case 2. p is odd; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + pξt of order p

4; 1 + ξtui of order
p4; 1 + ξtvj of order p

2; 1 + ξtwk of order p; and 1 + ξtyl of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 11.

Proposition 15. Let R be a ring constructed above and of
characteristic p5 withp4ui = 0, p3vj = 0, pwk = 0, and pyl = 0.
Then its group of units is characterized as follows:

R∗ ≅
ℤ2r−1 ×ℤr

8 ×ℤr
2 × ℤr

8ð Þe × ℤr
16ð Þe+f × ℤr

2ð Þg × ℤr
2ð Þh, p = 2,

ℤpr−1 ×ℤr
p4 × ℤr

p4

� �e
× ℤr

p3

� �f
× ℤr

p

� �g
× ℤr

p

� �h
, p ≠ 2:

8><
>:

ð45Þ

Proof. Since R∗ ≅ℤpr−1 × ð1 + ZðRÞÞ, it suffices to determine
the structure of 1 + ZðRÞ. Let ξ1,⋯, ξr be elements of R0
with ξ1 = 1 so that �ξ1,⋯, �ξr ∈ R0/pR0 ≅GFðprÞ form a basis
for GFðprÞ regarded as a vector space over its prime subfield
GFðpÞ. Then the generators with their respective orders are
as indicated below.

Case 1. p is even; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤
l ≤ h, the generators are 1 + 2ξt of order 8; 1 + 14ξt of order
2; 1 + 2ξtui of order 8; 1 + ξtui + ξtvj of order 16; 1 + ξtwk

of order 2; and 1 + ξtyl of order 2. The rest of the proof fol-
lows a similar argument and may be deduced from Propo-
sition 11.

Case 2. p is odd; 1 ≤ t ≤ r, 1 ≤ i ≤ e, 1 ≤ j ≤ f , 1 ≤ k ≤ g, 1 ≤ l
≤ h, the generators are 1 + pξt of order p

4; 1 + ξtui of order
p4; 1 + ξtvj of order p

3; 1 + ξtwk of order p; and 1 + ξtyl of
order p. The rest of the proof follows a similar argument
and may be deduced from Proposition 11.

4. Conclusions

The unit groups of some classes of five radical zero commu-
tative completely primary finite rings whose first and second
Galois ring module generators are of order pk, k = 2, 3, 4,
have been classified in this work. It is evident that the results
are in piece when p = 2 and p ≥ 3. Since the unit groups of
classes of five radical zero commutative completely primary
finite rings in this work have been classified via fundamental
theorem of finitely generated abelian group, the use of j
-diagram technique by References [8–10] is therefore rec-
ommended for possible further study of the unit groups of
such rings.
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