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Abstract

This chapter focuses on the investigation of non-negative functions’ absolute
continuity with regard to vector measures. Properties are used almost everywhere
to prove the boundedness, measurability, and convergence of sequences of measur-
able functions. Consideration is given to the measurability of sets with regard to
vector duality functions with values in a Hilbert space.

Keywords: Measurable sets; absolute continuity; integrable functions, non-negative
functions functions.

1 Introduction

Numerous investigations on absolute continuity in locally convex topological vector
spaces under finiteness and vector measure change have been conducted. Other
researchers used values in Normed linear spaces with metrics of bounded variation.
In this chapter, we take absolute continuity of non-negative functions into considera-
tion. Properties of vector duality set functions with values in the product Banach
spaces of absolutely summable functions (βεi : i ∈ I) in X defined on the indexed
set I are applied. Throuhout this paper, (X × Y,Z) denotes a bilinear system
where X × Y is the product of Banach spaces X and Y and Z is a Hilbert space,
(S, ρ) and (T, ε) denote measurable spaces with ρ and ε being the sigma rings of
subsets of S and T respectively and µ : ρ → βεi and ν : ε → Y denote vector
measures where µ(E) =

∑
i∈I | εi | (E) ∈ βεi and ν(F ) ∈ Y for sets E ∈ ρ and

F ∈ ε, L′(µ) and L′(ν) denotes first integral with respect to µ and ν repectively.

If ψ is a Z-valued bilinear function defined on X×Y such that ψ : X×Y → Z, then

< (µ(E)× ν(F ))ψ, z
∗ > = < (

∑
i∈I | εi | (E)× ν(F ))ψ, z

∗ >
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for each i ∈ I where z∗ is an element in Z∗ the dual space of the Hilbert space Z
is called vector duality function.

The readers may be interested in certain updates in this topic that are available
elsewhere [1, 2].

2 Basic Concepts

Definition 1 (Absolute continuity):

Let µ : ρ → βεi and ν : ε → Y be vector measures. If α and β are non-negative
set functions defined on ρ and ε respecively, then α × β is absolutely continuous
with respect to µ × ν if for each λ > 0 there corresponds a δ > 0 such that
µ × ν(E × F ) < δ implies that α × β(E × F ) < λ for every E × F ∈ ρ × ε. We
therefore write α× β < µ× ν

Definition 2 (Almost uniformly convergence)

A sequence (fn) of X×Y valued functions is said to (µ×ν) - converge to f almost
uniformly if given λ > 0, there exists

E × F = (E × F )(ε) ∈ ρ× ε such that µ× ν(E × F ) < λ and

| fn(s, t)− f(s, t) |→ 0 uniformly on S × T \ E × F

Definition 3 (Measurable function)

A function f : S × T → X × Y is said to be (µ× ν,X × Y ) - measurable

if and only if

i) Range(f) ⊂ X × Y

ii) There exists a sequence (fn) of X × Y valued functions converging (µ ×
ν,X × Y ) - a.e. to f

3 Results

The following propositions provide insights into properties of absolute continuity
of non-negative functions.
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Proposition 1: Let (S, ρ) and (T, ε) be measurable spaces, (X ×Y,Z) a bilinear
system and µ : ρ → βεi and ν : ε → Y be vector measures.If α and β are non-
negative measures defined on ρ and ε respectively such that

α× β << µ× ν, then α << µ and β << ν

Proof: Let G = E × F ∈ ρ× ε, λ > 0 and δ > 0 such that µ(E) < δ imply that
α(E) < λ for any set E ∈ ρ and ν(F ) < δ imply that β(F ) < λ for any set F ∈ ε.
Since α × β << µ × ν, on application of properties of product measures [3] , we
obtain

< (µ× ν)(G), z∗ > = < (µ× ν)(E × F ), z∗ >< δ2 implies that

< (α× β)(G), z∗ > = < (α× β)(E × F ), z∗ >< λ2

Consider the function f : S × T → X × Y .For a fixed s ∈ S, then f(s) ∈ L′(ν).
Let 5t = (s ∈ S : νf(s)[G

s] < δ) be the t - section of the set 5 [4] . It follows that,

δ2 ≥< (µ× νf(s))(G), z∗ > = < µ(Gt)× νf(s)(G
s), z∗ >.

Since νf(s)(G
s) > δ on the complement of 5t in Gt, it follows that

δ2 ≥< (µ(Gt)× νf(s)(G
s)), z∗ >> δµ((5t))c

where (5t))c denotes the complement of 5t

Therefore, µ((5t))c < δ implies α((5t))c < λ i.e. α << µ

Similarly for a fixed t ∈ T , we have

f(t) ∈ L′(α). Let 5s = (t ∈ T : αf(t)[G
t] < λ). Therefore,

λ2 ≥< (αf(t) × β)(G), z∗ > = < αf(t)(G
t)× β(Gs), z∗ > .

Hence, λ2 ≥< αf(t)(G
t)× β(Gs), z∗ >> λβ((5s))c

where (5s))c denotes the complement of 5s

Therefore, β((5s))c < λ when ν((5s))c < δ i.e. β << ν

Proposition 2: Let (X × Y,Z) a bilinear system, where X and Y are Banach
spaces and Z is a Hilbert space. Let β : ε → Y be a vector measure such
that such that α × β exists for every α : ρ → βεi . If α × β << µ × ν and
(β(F ))εi(E) = LUBn

∑
i∈I

∑n
k=1 | εi | (E)β(Fk) where (Fk) is the partition of F ,
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then (β(F ))εi(E) << µ× ν

Proof: Let α be a measure defined on a set (βεi : i ∈ I) of absolutely summable
functions (εi : i ∈ I) in X defined on an indexed set I. Since α × β is absolutely
continuous with respect to µ× ν, given λ > 0 there exists

δ = δ(ε) > 0 such that < µ× µ(G), z∗ >< δ implies < α× β(G), z∗ >< λ

for every G ∈ ρ× ε. Let E ∈ ρ and F ∈ ε such that for k > 0 we have

µ(E) < k and µ(F ) < δk−1

Let (B(F ))εi(E) = LUBn
∑
i∈I

∑n
k=1 | εi | (E)β(Fk) ∈ Z where (Fk) is the

partition of F for 1 ≤ k ≤ n (Otanga et al., 2015a). Define

α(E) =
∑
i∈I | εi | (E) for any measurable set E [5]. If G = E × F ∈ ρ× ε,

then G =
⋃n
k=1 E × Fk. Therefore

< (µ× ν)(G), z∗ > =
∑n
k=1 < µ(E)ν(Fk), z∗ >≤

∑n
k=1 k < ν(Fk), z∗ >

= k < ν(
⋃n
k=1 Fk), z∗ > = k < ν(F ), z∗ >< δ

Since < (α× β)(G), z∗ >< λ, it follows that

< (α× β)(G), z∗ > =
∑n
k=1 < α(E)β(Fk), z∗ >

= <
∑
i∈I

∑n
k=1 | εi | (E)β(Fk), z∗ >

Taking the least upper bound of right hand side of the equation

[6] , we obtain

< (B(F ))εi(E), z
∗ >< λ . Hence (B(F ))εi(E) << µ× ν

Proposition 3: Let (Xεi ×Y, z) be a bilinear system and α be a measure defined
on a set (βεi : i ∈ I) of absolutely summable functions (εi : i ∈ I) in X defined on
an indexed set I. Let µ : ρ → βεi and ν : ε → Y be vector measures. If for each
i ∈ I, αi and βi are non-negative set functions defined on ρ and ε respectively
such that αi << µ and βi << ν, then

∑
i∈I αi × βi << µ× ν.

Proof: For each E ∈ ρ and F ∈ ε, let µ(E) =
∑
i∈I | εi | (E) ∈ Xεi and ν(F ) ∈ Y

such that µ(E)ν(F ) =
∑
i∈I | εi | (E)ν(F ). For each i ∈ I, let αi×βi <<| εi | ×ν
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where α× βi is a non-negative set function on ρ× ε.

For each measurale set E × F and each λ > 0 there exists δ > 0 such that [7]

<| εi | ×ν(E × F ), z∗ >< δ implies < (αi × βi)(E × F ), z∗ >< λ. Let

σ ⊂ I be an arbitrary finite subset such that∑
i∈σ < (αi × βi)(E × F ), z∗ > =

∑
i∈I <| εi | ×ν(E × F ), z∗ >.

If
∑
i∈I αi × βi is a set function defined on ρ× ε by the formula∑

i∈I < (αi × βi)(E × F ), z∗ > = sup(
∑
i∈σ < (αi × βi)(E × F ), z∗ >

then for each λ > 0 there exists δ > 0 such that∑
i∈I <| εi | ×ν(E × F ), z∗ >< δ implies that∑
i∈I < (αi × βi)(E × F ), z∗ >< λ

Hence
∑
i∈I αi × βi << µ× ν

Proposition 4: Let (fn)∞n=1 be a sequence of functions such that fn : S × T →
X × Y for each n. Let α : ρ→ X and β : ε→ Y be a vector measures such that
such α× β << µ× ν where ν is a non-negative set function defined on ε.

If fn → f (µ × ν,X × Y )-almost uniformly, then fn → f almost everywhere. If
fn is (µ× ν,X × Y )-integrable, then f is integrable and

<
∫
µ|fn(t)−f(t)|((G

′)t)δν(t), z∗ >< λ for all n ≥ ℵ, λ > 0, t ∈ T and

(G′)t ∈ ρ.

Proof: Since fn → f (µ × ν,X × Y )-almost uniformly, let Gm be a measurable
set with respect to ρ× ε such that (α×β)(Gm) < λ \ 2m for each positive integer
m and λ > 0. Let fn(s, t) → f(s, t) uniformly on S × T \ Gm. It follows that
G =

⋂∞
m=1 Gm is a α×β-null set and fn(s, t)→ f(s, t) foreach (s, t) ∈ S×T \Gm.

Therefore fn → f a.e. Since f is a limit of an fn is (µ × ν,X × Y )-integrable
function, then it is (µ× ν,X × Y )-integrable.

Since α × β << µ × ν (by hypothesis), given λ > 0 there corresponds a δ > 0
such that (µ× ν)(G′) < δ implies (α× β)(G′) < λ \ 2m for every G′ ∈ ρ× ε amd
m > 0. Since fn → f (µ× ν,X × Y )-almost uniformly, there exists G′′ ⊂ G′ such
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that for a fixed t ∈ T , we have

α((G′′)t) =
∑
i∈I | εi | ((G

′′)t) < λ \ 2m

For all n > ℵ and as a consequence of integral representation of product vector
measure duality [8] , we have

<
∫
| fn(t)− f(t) | δµ, z∗ >< λ \ 2

∑
i∈I | εi | ((G

′)t \ (G′′)t)

It follows from measurable concepts in [9] that

<
∫
µ|fn(t)−f(t)|((G

′)t)δν(t), z∗ >

≤ λ(
∑
i∈I | εi | ((G

′)t \ (G′′)t) \ 2
∑
i∈I | εi | ((G

′)t \ (G′′)t) <
λ \ 2

Since fn is (µ× ν,X × Y )-integrable function, it is bounded.

Suppose
∫
fn(t)δµ ≤ m \ 2 for any positive integer m > 0 and for a fixed t ∈ T

[10]. Then fn → f implies that
∫
| fn(t)− f(t) | δµ ≤ m for all n.

Let ∆ be a measurable set with respect to ρ× ε such that G′ \∆ is a α× β-null
set. On application of integral properties of vector measure

[11] and Yaogan, 2013), we obtain

<
∫
µ|fn(t)−f(t)|((G

′′)t)δν(t), z∗ > = <
∫
µ|fn(t)−f(t)|((G

′′)t
⋂

∆t)δν(t), z∗ >

+ <
∫
µ|fn(t)−f(t)|((G

′′)t \∆t)δν(t), z∗ >

Since (G′′)t \∆t is a α-null set, therefore

<
∫
µ|fn(t)−f(t)|((G

′′)t)δν(t), z∗ > ≤ <
∫
µ|fn(t)−f(t)|((G

′′)t
⋂

∆t)δν(t), z∗ >

≤ m
∑
i∈I | εi | (G

′′)t
⋂

∆t)

Since
∑
i∈I | εi | (G

′′)t
⋂

∆t) ≤
∑
i∈I | εi | (G

′′)t), it follows that

<
∫
µ|fn(t)−f(t)|((G

′′)t)δν(t), z∗ > ≤ m
∑
i∈I | εi | (G

′′)t)

< m ∗ λ \ 2m = λ \ 2
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Consequently,

<
∫
µ|fn(t)−f(t)|((G

′)t)δν(t), z∗ > ≤ <
∫
µ|fn(t)−f(t)|((G

′)t\(G′′)t)δν(t), z∗ >

+ <
∫
µ|fn(t)−f(t)|((G

′′)t \∆t)δν(t), z∗ >

< λ \ 2 + λ \ 2 = λ

Corollary: Let (X × Y,Z) a bilinear system, where X and Y are Banach
spaces and Z is a Hilbert space. Let (S × T, ρ × ε) be a measurable space and
(fGn)∞n=1 be a sequence of (µ × ν, βεi × Y ) - a.e. bounded functions such that
fGn : S×T → X×Y for each n. If fGn → fG is (µ×ν, βεi×Y ) - almost uniformly
where Gn ↑ G and G,Gn ∈ ρ × ε, then LUBn

∑
i∈I < (| εi | ×β)(Gn), z∗ > =∑

i∈I < (| εi | ×β)(G), z∗ >

Proof: f : S × T → X × Y and fG = χG where G ∈ ρ× ε. Let fG ⊆ βi

where βi is a Banach space of absolutely summable functions (ε:i ∈ I).

∇ = (Gn ∈ ρ× ε : fGn is (µ× ν, βεi × Y ) - measurable).

Gn =
⋃n
k=1 Ek × Fk where the union is disjoint and Ek × Fk ∈ ρ× ε

for each k. Then

< (α× β)(Gn), z∗ > =
∑n
k=1 < α(Ek)β(Fk), z∗ >

=
∑
i∈I

∑n
k=1 <| εi | (Ek)β(Fk), z∗ >

where | εi | (Ek) ∈ βεi for each i ∈ I and β(Fk) ∈ Y for 1 ≤ k ≤ n

If fG = χG, then fGn(s, t) is a (µ× ν, βεi × Y ) - valued function where

Gn ∈ ρ× ε for each (s, t) ∈ S × T . It follows that Gn ∈ ∇ and ρ× ε ⊆ ∇.

Therefore, fGn(s, t) is a (µ× ν, βεi × Y ) - measurable.

Let G′n = ((x, y) :| fGn(x, y)− fG(x, y) |) ≥ 1 \m for some n)

If G′′ =
⋃∞
k=1 G

′
n , then

(G′′)c =
⋂∞
k=1(G′n)c =

⋂∞
k=1(((x, y) :| fGn(x, y)− fG(x, y) |≥ 1 \m)c
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=
⋂∞
k=1(((x, y) :| fGn(x, y)− fG(x, y) |< 1 \m)

where (G′′)c is the complement of G′′

Therefore, (G′′n)c ⊂ (((x, y) :| fGn(x, y)− fG(x, y) |< 1 \m)

If 1 \m < λ for λ > 0, then | fGn(x, y)− fG(x, y) |< λ for all (x, y) ∈ (G′′)c

where G′′ is a null set. Therefore, fGn → fG (µ× ν, βεi × Y ) - almost uniformly.
Since fGn is (µ× ν, βεi × Y ) - a.e. bounded, then fG is (µ× ν, βεi × Y ) bounded.
It follows that fG is (µ×ν, βεi ×Y ) - measurable since it is the limit of a sequence
(fGn)∞n=1 of (µ × ν, βεi × Y ) - measurable functions. Since fG is bounded and
measurable it implies that fG is (µ× ν, βεi × Y ) - integrable.

Let fGn ≤ fGn+1 a.e. for all n ∈ ℵ and for a fixed t ∈ T . Then<
∫

(αfGn(t)
(E))δβ(t), z

∗ >≤
m for m > 0 and E ∈ ρ. By monotone properties of a vector measure [12] , there
exists an integrable function fG such that fGn ↑ fG and LUBn <

∫
(αfGn(t)

(E))δβ(t), z
∗ >

= <
∫

(αfG(t)
(E))δβ(t), z

∗ >.

Since Gn ↑ G (hypothesis), it follows that

LUBn
∑
i∈I <| εi | ×β(Gn), z∗ > =

∑
i∈I <| εi | ×β(G), z∗ >

4 Conclusion

The results obtained in this paper highlights the application of almost everywhere,
measurability and boundedness properties to analyse absolute continuity of non-
negative functions with values in a Hilbert space.
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