
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329129336

On the Computationally Efficient Numerical Solution to the Helmholtz Equation

Article  in  International Mathematical Forum · November 2018

DOI: 10.12988/imf.2014.311224

CITATION

1
READS

66

1 author:

Some of the authors of this publication are also working on these related projects:

Devising efficient algorithms for prediction, smoothing and filtering in the context of data assimilation. Besides, we do modelling as a side hustle. View project

David Angwenyi

Masinde Muliro University of Science and Technology

13 PUBLICATIONS   28 CITATIONS   

SEE PROFILE

All content following this page was uploaded by David Angwenyi on 27 November 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/329129336_On_the_Computationally_Efficient_Numerical_Solution_to_the_Helmholtz_Equation?enrichId=rgreq-98f5a57649d3c2cbb02f9b2b4ea281f9-XXX&enrichSource=Y292ZXJQYWdlOzMyOTEyOTMzNjtBUzo2OTc1Njg5MDQzNTE3NDZAMTU0MzMyNDc5NTI2OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/329129336_On_the_Computationally_Efficient_Numerical_Solution_to_the_Helmholtz_Equation?enrichId=rgreq-98f5a57649d3c2cbb02f9b2b4ea281f9-XXX&enrichSource=Y292ZXJQYWdlOzMyOTEyOTMzNjtBUzo2OTc1Njg5MDQzNTE3NDZAMTU0MzMyNDc5NTI2OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Devising-efficient-algorithms-for-prediction-smoothing-and-filtering-in-the-context-of-data-assimilation-Besides-we-do-modelling-as-a-side-hustle?enrichId=rgreq-98f5a57649d3c2cbb02f9b2b4ea281f9-XXX&enrichSource=Y292ZXJQYWdlOzMyOTEyOTMzNjtBUzo2OTc1Njg5MDQzNTE3NDZAMTU0MzMyNDc5NTI2OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-98f5a57649d3c2cbb02f9b2b4ea281f9-XXX&enrichSource=Y292ZXJQYWdlOzMyOTEyOTMzNjtBUzo2OTc1Njg5MDQzNTE3NDZAMTU0MzMyNDc5NTI2OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Angwenyi?enrichId=rgreq-98f5a57649d3c2cbb02f9b2b4ea281f9-XXX&enrichSource=Y292ZXJQYWdlOzMyOTEyOTMzNjtBUzo2OTc1Njg5MDQzNTE3NDZAMTU0MzMyNDc5NTI2OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Angwenyi?enrichId=rgreq-98f5a57649d3c2cbb02f9b2b4ea281f9-XXX&enrichSource=Y292ZXJQYWdlOzMyOTEyOTMzNjtBUzo2OTc1Njg5MDQzNTE3NDZAMTU0MzMyNDc5NTI2OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Masinde-Muliro-University-of-Science-and-Technology?enrichId=rgreq-98f5a57649d3c2cbb02f9b2b4ea281f9-XXX&enrichSource=Y292ZXJQYWdlOzMyOTEyOTMzNjtBUzo2OTc1Njg5MDQzNTE3NDZAMTU0MzMyNDc5NTI2OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Angwenyi?enrichId=rgreq-98f5a57649d3c2cbb02f9b2b4ea281f9-XXX&enrichSource=Y292ZXJQYWdlOzMyOTEyOTMzNjtBUzo2OTc1Njg5MDQzNTE3NDZAMTU0MzMyNDc5NTI2OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Angwenyi?enrichId=rgreq-98f5a57649d3c2cbb02f9b2b4ea281f9-XXX&enrichSource=Y292ZXJQYWdlOzMyOTEyOTMzNjtBUzo2OTc1Njg5MDQzNTE3NDZAMTU0MzMyNDc5NTI2OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


International Mathematical Forum, Vol. 9, 2014, no. 6, 259 - 266
HIKARI Ltd, www.m-hikari.com

http://dx.doi.org/10.12988/imf.2014.311224

On the Computationally Efficient

Numerical Solution to the Helmholtz Equation

Angwenyi N. David, Lawi George, Ojiema Michael

Department of Mathematics
Masinde Muliro University of Science and Technology

P. O. Box 190–50100, Kakamega, Kenya

Owino Maurice

Department of Mathematics and Computer Science
University of Kabianga

P.O. Box 2030–20200, Kericho, Kenya

Copyright c© 2014 Angwenyi N. David, Lawi George, Ojiema Michael and Owino Maurice.

This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Abstract

Named after Hermann L. F. von Helmholtz (1821-1894), Helmholtz equation
has obtained application in many fields: investigation of acaustic phenomena
in aeronautics, electromagnetic application, migration in 3-D geophysical ap-
plication, among many other areas. As shown in [2], Helmholtz equation is
used in weather prediction at the Met Office in UK. Inefficiency, that is the
bottleneck in Numerical Weather Prediction, arise partly from solving of the
Helmholtz equation. This study investigates the computationally efficient it-
erative method for solving the Helmholtz equation. We begin by analysing the
condition for stability of Jacobi Iterative method using Von Neumann method.
Finally, we conclude that Bi-Conjugate Gradient Stabilised Method is the most
computationally efficient method.
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1. Introduction

In Numerical Weather Prediction, the discretisation of governing equations
leads to the Helmholtz equation, which is solved for the increment in pressure
field Π′ [3]. The 2-dimensional Helmholtz equation is given by;

∇2Π′(x, y) + ω2Π′(x, y) = Φ(x, y) (1.1)

where ∇2 is the Laplacian in rectangular coordinates, ω is the wave number
and Φ is the value of the pressure field calculated from the previous time step.
Solving of 3-dimensional version of the Helmholtz equation alone takes about
a third of the total forecast time [2]. As a result, optimal and efficient methods
are being sought for solving this equation. In this study, a simple sample exam-
ple of the Helmholtz problem is solved using Gauss-Seidel, Jacobi, Successive-
Over-Relaxation, Conjugate Gradient, Bi-Conjugate Gradient, Bi-Conjugate
Gradient Stabilised, Quasi-Minimal Residual and Generalised Minimal Resid-
ual Methods. Use is made of MATLAB for computation. Comparison of these
methods is done in regards to computational efficiency. Before that, we analyse
the stability of the 2-dimensional Helmholtz equation.

2. Discretisation of the Helmholtz equation

Let Φ(x, y) = 0. This is to ease the analysis of stability. Therefore,

∇2Π′(x, y) + ω2Π′(x, y) = 0 (2.1)

Central difference approximation of (1) yields the following difference equation:

Π′i+1,j − 2Π′i+,j + Π′i−1,j

(∆x)2
+

Π′i,j+1 − 2Π′i,j + Π′i,j−1

(∆y)2
+ ω2Π′i,j = 0 (2.2)

To simplify further, we let ∆x = ∆y = h. This substitution and multiplication
by h2 leads to:

Π′i+1,j − 2Π′i,j + Π′i−1,j + Π′i,j+1 − 2Π′i,j + Π′i,j−1 + (hω)2Π′i,j = 0 (2.3)

Collecting like terms together in (2.3) leads to:

(4− h2ω2)Π′i,j = Π′i+1,j + Π′i−1,j + Π′i,j+1 + Π′i,j−1 (2.4)

Equation (2.4) is the discretised form of the Helmholtz equation (2.1).

3. Stability analysis using Von Neumann method

Suppose we use Jacobi iteration for solving a system of equations generated
by (2.4). The recurrence relation for the Helmholtz equation (2.1) is then given
by:

Π
′(k+1)
i,j =

1

(4− h2ω2)

[
Π
′(k)
i+1,j + Π

′(k)
i−1,j + Π

′(k)
i,j+1 + Π

′(k)
i,j−1

]
(3.1)

Let us define the error at the kth iteration as follows:

e
(k)
i,j = Π

′(k)
i,j (Exact)− Π

′(k)
i,j (Approximated) (3.2)
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Since the exact solution satisfies the relation (3.1), so is the error. Hence,

e
(k+1)
i,j =

1

(4− h2ω2)

[
e

(k)
i+1,j + e

(k)
i−1,j + e

(k)
i,j+1 + e

(k)
i,j−1

]
(3.3)

The error term is represented in the form

e
(k)
l,m = Apq sin

pπl

m
sin

qπm

m
, 1 ≤ p, q ≤ m− 1 (3.4)

Apq is an arbitrary constant. Following from (3.4), we have the following
expressions:

e
(k)
i+1,j = Apq sin

pπ(i+ 1)

m
sin

qπj

m

= Apq sin
qπj

m

[
sin

pπi

m
cos

pπ

m
+ cos

pπi

m
sin

pπ

m

] (3.5)

e
(k)
i−1,j = Apq sin

pπ(i− 1)

m
sin

qπj

m

= Apq sin
qπj

m

[
sin

pπi

m
cos

pπ

m
− cos

pπi

m
sin

pπ

m

] (3.6)

e
(k)
i+1,j + e

(k)
i−1,j = 2Apq sin

qπi

m
sin

pπi

m
cos

pπ

m

= 2 cos
pπ

m

[
Apq sin

pπi

m
sin

qπj

m

]
= 2 cos

pπ

m
e

(k)
i,j

(3.7)

In the selfsame way,

e
(k)
i+1,j + e

(k)
i−1,j = 2Apq cos

qπ

m
sin

pπi

m
sin

qπj

m

= 2 cos
qπ

m
e

(k)
i,j

(3.8)

Substituting equations (3.7) and (3.8) into equation (3.3) yields:

e
(k+1)
i,j =

1

(4− h2ω2)

[
2 cos

pπ

m
+ 2 cos

qπ

m

]
e

(k)
i,j

= ξe
(k)
i,j where ξ =

1

(4− h2ω2)

[
2 cos

pπ

m
+ 2 cos

qπ

m

] (3.9)

ξ is the propagating factor. For stability;

|
e

(k+1)
i,j

e
(k)
i,j

| = |ξ| < 1 (3.10)

This implies that

| 1

(4− h2ω2)

[
2 cos

pπ

m
+ 2 cos

qπ

m

]
| < 1 (3.11)
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Let p = q = 1. Therefore,

−1 <

(
4

4− ω2h2
cos

π

m

)
< 1 (3.12)

Equation (3.12) is the condition for stability of the Helmholtz equation (2.1).
It shows that the wave number, ω, and the spatial step-size, h, determine the
stability of the numerical scheme. To guarantee stability, the wave number and
the spatial step-sizes should be chosen such that equation (3.12) is satisfied.

4. A sample problem

To analyse efficiency of various iterative methods, we make use of the fol-
lowing example.

Let us seek a numerical solution to the Helmholtz equation

∇2Π′(x, y) + ω2Π′(x, y) = Φ(x, y), (4.1)

with boundary condition

Π′(x, y) = ln
[
(x+ 1)2 + y2

]
(4.2)

Let Φ(x, y) =
1

4
(x + y), ∆x = ∆y = 0.25 and ω = 1. Furthermore, let

this problem be solved on a unit square, 0 ≤ x, y ≤ 1. Central difference
discretisation of this problem, as illustrated in section 2 above, yields a system
of equations in the form

AΠ′ = b (4.3)

That is;

3.9375 −1 0 −1 0 0 0 0 0
−1 3.9375 −1 0 −1 0 0 0 0
0 −1 3.9375 0 0 −1 0 0 0

−1 0 0 3.9375 −1 0 −1 0 0
0 −1 0 −1 3.9375 −1 0 −1 0

0 0 −1 0 −1 3.9375 0 0 −1

0 0 0 −1 0 0 3.9375 −1 0
0 0 0 0 −1 0 −1 3.9375 −1
0 0 0 0 0 −1 0 −1 3.9375





Π′
1

Π′
2

Π′
3

Π′
4

Π′
5

Π′
6

Π′
7

Π′
8

Π′
9

 =



0.6319117244
0.9984302162

2.771030124

0.4106435513
0.25

1.759418983
1.637270447
1.491154996

3.294669267


(4.4)

In the following section, the system of equations (4.4) is solved using various
iterative methods. A brief outline of the principle behind each method is given.

5. Iterative schemes

In this section, we outline and briefly describe various iterative schemes for
solving the system of equations (4.4). More study on these methods can be
obtained in [5] and [1] from which this summary is obtained.
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5.1. Jacobi Iterative (JI) Method. It is given by,

Π′
(k+1)

= D−1
[
b− (L + U)Π′

(k)
]
, k = 0, 1, 2, ... (5.1)

where D, L and U are the diagonal, lower and upper matrices, respectively,
obtained by decomposition of matrix A. k is the number of iteration.

5.2. Gauss-Seidel Iterative (GSI) Method. This is given by,

Π′
(k+1)

= (L + D)−1
[
b−UΠ′

(k)
]
, k = 0, 1, 2, ... (5.2)

The unknowns are similar to those in subsection (5.1) above.

5.3. Successive-Over Relaxation (SOR) Method. This is a modification
of the Gauss-Seidel method to accelerate its convergence. It is expressed as
follows:

Π′
(k+1)

= (D + αL)−1 [(1− α)D− αU] Π′
(k)

+ α(D− αL)−1b, k = 0, 1, 2, ...
(5.3)

α is called the relaxation factor. It can be shown that convergence is obtained
within the range 0 < α < 2. To accelerate convergence of an already conver-
gent Gauss-Seidel Method, over-relaxation method is used, that is, by choosing
α in the interval 1 < α < 2.

5.4. Conjugate Gradient (CG) Method. This scheme is given by;

Π′
(k)

= Π′
(k−1)

+ tkv
(k) (5.4)

where v(k) is a search direction expressed in vector form.

tk =
< v(k), b−AΠ′(k−1) >

< v(k), Av(k) >
(5.5)

5.5. Bi-Conjugate Gradient Stabilized (BiCGSTAB) Method. This
method avoids the often irregular convergence patterns of the Conjugate Gra-
dient Squared method. It computes i→ Qi (A) Pi (A) r(0) where Qi is an ith
degree polynomial describing a deepest descent.

5.6. Bi-Conjugate Gradient (BICG) Method. Unlike in the Conjugate
Gradient method, the residuals are replaced with relations that are similar but
based on AT instead of A . Two sequences of residuals are updated.

r(i) = r(i−1) − αiAp(i) (5.6)

and

r̃(i) = r̃(i−1) − αiA
T p̃(i) (5.7)

The sequences of search directions are:

p(i) = r(i−1) + βi−1p
(i−1) (5.8)

and
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p̃(i) = r̃(i−1) + βi−1p̃
(i−1) (5.9)

where αi =
r̃(i−1)T r(i−1)

p̃(i)T Ap(i)
and βi =

r̃(i)T r(i)

r̃(i−1)T r(i−1)
respectively.

This ensures the bi-orthogonality relations:

r̃(i)T r(j) = p̃(i)T Ap(i) = 0 (5.10)

if i 6= j

5.7. Quasi-Minimal Residual (QMR) Method. It is meant to overcome
the irregularity of the convergence of BICG method. It solves the reduced
tri-diagonal system in a least squares sense. It uses look-ahead techniques to
avoid breakdowns that make it more robust than BICG.

5.8. Generalised Minimal Residual (GMRES) Method. The iterates of
this method are given by;

x(i) = x(0) + y1v
(1) + ...+ yiv

(i) (5.11)

The coefficients yk are chosen to minimise the residual norm ‖b−Ax(i)‖.

6. Results

The solution of the sample 2-dimensional Helmholtz equation has been sum-
marised in Table 1 and Figure 1 for the different methods used.

Table 1. A summary of the number of iterations and CPU-
Time for methods used

Method JI GSI SOR CG BiCGSTAB BICG QMR GMRES
No of Iterations 34 17 12 5 2 9 9 3
CPU-Time ×1000 31.2 0 0 0 0 31.2 46.8 15.6

1

1The zero value in Table 1 implies a negligible value
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Figure 1. A graph showing the number of iterations and CPU-
time of different methods
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The Helmholtz equation can be visualized using the Graphical User Interface
in MATLAB. The following is an output of the Helmholtz equation with ω = 1.

Figure 2. Visualization of the Helmholtz equation in MATLAB
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7. Conclusion

Stability analysis of the Helmholtz equation using Von Neumann method
shows that stability is guaranteed when the wave number and the spatial step
size are chosen such that;

−1 <

(
4

4− ω2h2
cos

π

m

)
< 1 (7.1)

Solving the Helmholtz equation iteratively, using different methods, shows
that the iterations converge faster by Bi-Conjugate Gradient Stabilized Method
followed by the Generalised Minimal Residual Method. The least convergent
method is the Jacobi Iterative Method. While the Quasi-Minimal Residual
Method converges relatively faster than the Jacobi Iterative Method, it takes
longer CPU-time than all other methods. It is therefore not computationally
efficient. The most computationally efficient method for solving the Helmholtz
equation is therefore Bi-Conjugate Gradient Stabilized Method followed by
Generalised Minimal Residual Method.
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