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Abstract

In this paper, a class of completely primary finite rings of charac-
teristic pk has been constructed . The objective is to investigate the
inverses of regular elements in the class of rings.
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1 Introduction

The classification of finite rings still remains elusive . Every element in a finite
ring with identity is either a zero divisor or a unit. It is well known that every
commutative finite ring is a direct sum of completely primary finite rings . The
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study on the structures of units and zero divisors has not been exhausted. An
element a ∈ R is said to be Von-Neumann regular if there exists an element
b ∈ R such that a = a2b , where b is the Von-Neumann Inverse of a , See e.g [3].
An element of R is regular if it is either a unit or zero.This article investigates
the inverses of regular elements in R.

Unless otherwise stated, J(R) shall denote the Jacobson radical of a com-
pletely primary finite ring R. The set of all the regular elements in R shall be
denoted by V (R) . The rest of the notations used in this article are standard
and reference may be made to [1], [2], [4] and [6].

2 Regular elements of Galois Rings

Let R be a completely primary finite ring with a unique maximal ideal J .
Then R is of order pnr; J is the Jacobson radical of R; Jm = (0) where m ≤ n
and the residue field R/J ∼= Fpr is a finite field for some prime integer p and
positive integer r. The characteristic of R is pk where k is an integer such that
1 ≤ k ≤ m. If k = m = n, then R = Zpk [b] where b is an element of R of
multiplicative order pr− 1 ; J = pR and Aut(R) ∼= Aut(R/pR). Such a ring is
called a Galois ring , denoted by GR(pkr, pk). Now,GR(pkr, pk) = Zpk [x]/(f)
where f ∈ Zpk [x] is a monic polynomial of degree r whose image in Zp[x] is
irreducible.

The results on trivial Galois rings can be obtained from [3]. The proofs have
been made more elaborate. Consider the trivial Galois ring GR(pk, pk) = Zpk .
Then for each natural number pk, the function ϕ(pk) is the number of integers
x such that 1 ≤ x ≤ pk and g.c.d (x, pk)=1, $(pk) is the number of distinct
primes dividing pk, τ(pk) is the number of divisors of pk and σ(pk) is the sum
of the divisors of pk.

Proposition 1 (See [3]). Let p and k be a prime and a positive integer respec-
tively.An element a is regular in GR(pk, pk) iff ap

k−pk−1+1 ≡ a(mod pk)

Proof. Suppose a is a regular element in Zpk . If a ≡ 0(mod pk), then

ap
k−pk−1+1 ≡ a(mod pk). Now , let a be a unit(mod pk). Using Euler’s theorem,

ap
k−pk−1 ≡ 1(mod pk). Therefore ap

k−pk−1+1 ≡ a(mod pk).
Conversely , a ≡ ap

k−pk−1+1 ≡ a2ap
k−pk−1−1(mod pk), so that a is a regular

element.

Corollary 1 (See [3]). Let 0 6= a be a regular element in GR(pk, pk), then
ap

k−pk−1−1 is a Von-Neumann inverse of a in GR(pk, pk).

Proposition 2 (See [3]). Let R = GR(pk, pk). Then V (pk) = pk − pk−1 + 1 =
ϕ(pk) + 1 = pk(1− 1

p
+ 1

pk
)
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Proof. Since GR(pk, pk) is local , every regular element in the ring is either
zero or a unit . Now, the number of all the units of the ring is pk − pk−1 and
the zero element in the ring is unique . Thus the result easily follows.

Proposition 3 (See [3]). Let p and k be a prime and a positive integer respec-
tively. Then V (pk) =

∑
t‖pk ϕ(t) and V (pk)/ϕ(pk) =

∑
t‖pk 1/ϕ(t).

Proof. In GR(P k, pk), the unitary divisors are 1 and pk ≡ 0(mod pk). By
definition, ϕ(1)=1. But V (pk) = pk − pk−1 + 1 = ϕ(pk) + 1 = ϕ(pk) + ϕ(1).

Further, V (pk)
ϕ(pk)

= pk−pk−1+1
pk−pk−1 = 1 + 1

pk−pk−1

=
1

ϕ(1)
+

1

ϕ(pk)
.

The summatory function F (pk) is given by
F (pk) =

∑
t|pk V (t) =

∑k
i=0 V (pi) = V (1) +

∑k
i=1 V (pi)

= V (1) +
k∑
i=1

[(pi − pi−1) + 1]

= 1 + (p+ p2 + .....+ pk)− (1 + p+ p2 + ....+ pk−1) + k

= pk + k.

Theorem 2 (See [3]). Let R = GR(pk, pk), then σ(pk) +ϕ(pk) ≤ pkτ(pk).

Proof. Let k=1, then σ(p) = p+1 and ϕ(p) = p−1 so that σ(p)+ϕ(p) = 2p.
Since p has only two divisors, that is 1 and p, then 2p = pτ(p).
Thus σ(p) + ϕ(p) = pτ(p).
Now , suppose k > 1, then σ(pk) =

∑k
i=0 p

i and ϕ(pk) = pk − pk−1, so that
σ(pk) + ϕ(pk) = 1 + p+ .....+ pk + pk − pk−1

= 2pk + pk−2 + ....+ p+ 1 < (k + 1)pk.

But pk has (k + 1) divisors, so that (k + 1)pk = pkτ(pk).
Thus σ(pk) + ϕ(pk) < pkτ(pk).

Lemma 1 (See [3]). Let R = GR(p, p) = Fp. Then σ(p) + V (p) > pτ(p)

Proof. Clearly σ(p) = p+ 1 and V (p) = p.
So σ(p) + V (p) = 2p+ 1 > 2p = pτ(p).

Theorem 3 (See [3]). Let R = GR(pk, pk). If k > 1, then σ(pk)+V (pk) <
pkτ(pk)
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Proof. Clearly 1 + 1
p

+ 1
p2

+ ....+ 1
pk
< k = (k + 1)− 1 = τ(pk)− 1

So σ(pk)
pk

= 1+p+p2+...+pk

pk
< τ(pk)− 1.

Now, σ(pk) < pk(τ(pk)− 1) = pkτ(pk)− pk.
Since V (pk) < pk, we obtain σ(pk) < pkτ(pk)− V (pk).

Lemma 2. Let R0 = GR(pr, p) for some prime integer p and positive
integer r. Then V (R0) = R0.

Proof. Clearly V (R0) ⊆ R0 because every element in V (R0) belongs to
R0. On the other hand , let a ∈ R0. Then a is either a unit or zero. Thus
a ∈ V (R0). So R0 ⊆ V (R0). This completes the proof.

We now characterize the VonNeumann inverses of regular elements inGR(pr, p).

Lemma 3. Let R0 = GR(pr, p), for some prime integer p and positive
integer r. If a 6= 0 is regular in R0, then a−1 ≡ a(V (p))r−2(mod p).

Proof. Clearly V (p) = p. Since R0 is a field of order pr, every nonzero
element in R0 is invertible. Let 0 6= a ∈ R0, then by Euler’s theorem, ap

r−1 ≡
1(mod p).
Multiplying both sides by a−1, we obtain ap

r−2 ≡ a−1(mod p).
Since ≡ is symmetric , the result follows.

Lemma 4. Let R = GR(pkr, pk) where p is a prime integer , k and r are
positive integers. Then V (R) = R∗ ∪ {0} and | V (R) |= p(k−1)r(pr − 1) + 1

Proof. Let a ∈ R∗ ∪ {0}, then a is either a unit or zero. Since R is local,
a is a regular element, that is a ∈ V (R). So R∗ ∪ {0} ⊆ V (R). On the other
hand, let a ∈ V (R), then there exists an element b ∈ R such that a = a2b,that
is a(1 − ab) = 0. If a is a unit, then 1 − ab = 0, so that ab = 1 and b is
the VonNeumann inverse of a. If a is a nonunit, then ab is a nonunit. But
ab = a2b2 = aabb = abab = (ab)2 because R is commutative. So ab = (ab)2.
⇒ ab(1− ab) = 0. Since 1− ab is a unit, ab = 0. so that a = 0 because b is its
VonNeumann inverse.
Thus V (R) ⊆ R∗ ∪ {0}. Now R∗ = (R∗/1 + J) × 1 + J ∼= Zpr−1 × 1 + J. But
| 1 + J |=| J |=| pGR(pkr, pk) |= p(k−1)r. Therefore | R∗ |= (pr − 1)(p(k−1)r).
Since V (R) = R∗ ∪ {0}, the last statement easily follows.

Proposition 4. Let R0 = GR(pkr, pk). Suppose a is a regular element in R0,

then its VonNeumann inverse is given as a−1 ≡ ap
(k−1)r(pr−1)−1(mod pk).

Proof. If a is regular inR, then a ≡ a|R
∗|+1 ≡ ap

(k−1)r(pr−1)+1 ≡ a2ap
(k−1)r(pr−1)−1(mod

pk). So that a−1 ≡ ap
(k−1)r(pr−1)−1(mod pk).
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3 Regular elements of completely primary fi-

nite rings of characteristic pk

Let R0 be the Galois ring of the form GR(pkr, pk). For each i = 1, ....., h, let
ui ∈ J(R) such that U is h-dimensional R0-module generated by u1, ......, uh
so that R = R0 ⊕ U = R0 ⊕

∑h
i=1⊕(R0/pR0)

i is an additive group. On this
group, define multiplication as follows:

(r0, r1, r2, ....., rh)(s0, s1, s2, ...., sh) = (r0s0, r0s1+r1s0, r0s2+r2s0, ......., r0sh+
rhs0).
It is well known that this multiplication turns R into a completely primary
finite ring with identity (1, 0, 0, ...., 0).
The structure of the group of units of this ring is well known and reference
may be made to [5].

Theorem 4. Let R be the ring constructed in this section, it’s regular
elements are classified as follows;

(i)If char R = p, then V (R) ∼= Zpr−1 × (Zrp)h ∪ {0}

(ii)If char R = p2, then V (R) ∼= Zpr−1 × Zrp × (Zrp)h ∪ {0}

(iii)If char R = pk, k ≥ 3, then

V (R) ∼=
{

Z2r−1 × Z2 × Z2n−2 × Zr−12n−1 × (Zr2)h ∪ {0}, if p = 2;
Zpr−1 × Zrpn−1 × (Zrp)h ∪ {0}, if p 6= 2.

Proof. This is a consequence of Theorem 1 in [5].

Proposition 5. Let R0 = GR(pk, pk) and U = R0/pR0⊕ ........⊕R0/pR0 be an
R-module generated by h elements so that R = R0⊕U = R0⊕R0/pR0 ⊕ ........⊕R0/pR0︸ ︷︷ ︸

hsummands

.

If s0 is regular in R0, then its VonNeumann inverse s−10 = sp
k−pk−1−1

0 , and

(s0, s1, s2, ...., sh)
−1 = (s

pk−pk−1−1

0 ,−s1t0s−10 , ......,−sht0s−10 ).

Proof. For the inverse of s0, refer to Proposition 4.
Now let (t0, t1, t2, ..., th) = (s0, s1, s2, ...., sh)

−1, then (s0, s1, ...., sh) = (s0, s1, s2, ..., sh)
2

(t0, t1, t2, ...., th) = (s20, s0s1 + s1s0, ....., s0sh + shs0)(t0, t1, ..., th) = (s20t0, s
2
0t1 +

(s0s1 + s1s0)t0, ....., s
2
0th + (s0sh + shs0)t0)

So s0 = s20t0.⇒ s0t0 = 1

⇒ t0 = s−10 = sp
k−pk−1−1

0 .
For i = 1, ..., h, si = s20ti + (s0si + sis0)t0
⇒ s20ti = si − (s0si + sis0)t0
ti = si−2s0sit0

s20
because R is commutative.
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ti = si
s20
− 2sit0

s0
= sit0

s0
− 2sit0

s0

= −sit0
s0

= −sit0s−10

= −sis−20 .

So (s0, s1, s2, ...., sh)
−1 = (s

pk−pk−1−1

0 ,−s1s−20 , .....,−shs−20 )

Theorem 5. Let R = R0 ⊕ R0u1 ⊕ ..... + R0uh, then r ∈ R is regular iff
either it is zero or a unit in R.

Proof. V (R) = R∗ ∪ {0} = (R∗/1 + J(R)).(1 + J(R)) ∪ {0}

=< a > .(1 + J(R)) ∪ {0}

∼=< a > ×(1 + J(R)) ∪ {0}
∼= Zpr−1 × (1 + J(R)) ∪ {0}.

4 Main Result

Proposition 6. Let R0 = GR(pkr, pk) and U = R0/pR0⊕ ......⊕R0/pR0 be an
R-module generated by h elements so that R = R0⊕U = R0⊕R0/pR0 + .....⊕R0/pR0︸ ︷︷ ︸

hsummands

.

If s0 is regular in R0, then its VonNeumann inverse is s−10 = s
p(k−1)r(pr−1)−1
0

and (s0, s1, ..., sh)
−1 = (s

p(k−1)r(pr−1)−1
0 ,−s1t0s−10 , ......,−sht0s−10 )

Proof. Follows from Propositions 4 and 5.
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