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ABSTRACT 

The study of ideals in algebraic number system has contributed immensely in preserving the notion of unique 
factorization in rings of algebraic integers and in proving Fermat’s last Theorem. Recent research has revealed that 
ideals in Noetherian rings are closed in polynomial addition and multiplication.This property has been used to 

characterize the polynomial ring    12 nn xmodxF  for error control. In this research we generate ideals of the 

polynomial ring using GAP software and characterize the polycodewords using Shannon’s Code region and Manin’s 
bound.  
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1  Introduction 

1.1  Error control Coding 

The modern approach to error control coding in digital communication systems was started by Shannon [1], Golay [2] and 
Hamming [3]. By mathematically defining entropy of an information source and the capacity of a communication channel 
Shannon [1] showed that it was possible to achieve reliable communication over a noisy channel provided that the source’s 
entropy is lower than the channel’s capacity. He did not explicitly state how channel capacity could be practically reached, only 
that it was attainable. Hamming [3] and Golay [2] developed the first practical error control schemes. According to Wicker [4] this 
Hamming code had some undesirable properties; first, it was not efficient, requiring three check bits for every four data bits and 
second, it could only correct a single error within the block. 

Golay code [2] addressed these shortcomings by generalizing the construction of the Hamming code. In the process he 
discovered two codes; The first is the binary Golay code which groups data into blocks of twelve bits and then calculates eleven 
check bits. The associated decoding algorithm is capable of correcting up to three errors in the 23 bit code word. The second is 
the ternary Golay code, which operates on ternary, rather than binary, numbers. This code protects blocks of six ternary symbols 
with five ternary check symbols and has the ability to correct two errors in the resulting eleven symbol code word. The general 

techniques for developing Hamming and Golay codes were the same. They involved grouping q-ary symbols into blocks of k  

and then adding kn  check symbols to produce an n  symbol code word. The resulting code has the ability to correct t  

errors, and has a code rate 
n

k
. A code of this type is called a block code, and is referred to as a ),,,( tknq  block code. 

Hamming and Golay codes are linear since the modulo- q  sum of any two code words is itself a code word. According to Wicker 

[4] it is the binary Golay code which provided error control during the Jupiter fly-by of Voyager I launched in 1979 . 

The next main class of linear block codes to be discovered were the Reed-Muller codes, which were first described by Muller [5] 
in the context of Boolean logic design. These codes were more superior to the Golay Codes since they allowed more flexibility in 
the size of the code word and the number of correctable errors per code word. According to Wicker [4], these codes had an 

extensive application between 1969 and 1977 in the Mariner Missions to Mars, which used a 7)=6;=32;=2;=( tknq  
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RM - code. 

Next came the discovery of cyclic codes by Prange [6]. These are linear block codes that possess the additional property that any 
cyclic shift of a code word is also a code word. This property suggests that cyclic codes can be compactly specified by a 

polynomial of degree kn , denoted by )(xg  (the generator polynomial). 

Castagnoli etal [7] developed another class of Cyclic Codes called Cyclic Redundancy Check (CRC) codes. These have a 
desirable ability of increasing the number of correctable errors and are basically used to detect single and double bit errors. For 
this reason, CRC codes are primarily used today for error detection applications rather than for error correction. 

Bose, Ray-Chaudhuri and Hocquenghem [8] discovered BCH codes. They have length 1= mqn ,where m  is an integer 

valued design parameter. The number of errors that the binary 2)=(q  BCH code can correct is at least mknt =)(=   

though for some BCH codes it could be more. BCH codes were extended to the nonbinary case 2)( q  by Reed and 

Solomon [9]. Reed Solomon (RS) codes constituted a major advancement because their non binary nature allows for protection 
against bursts of errors. However, it was not until Berlekamp [10] introduced an efficient decoding algorithm that RS codes began 
to find practical applications. In his paper on the application of error control to communication, Berlekamp [10], realized that RS 
codes have found extensive applications in such systems as Compact Disk (CD) players, Digital Video Decoders (DVD) players, 
and the Cellular Digital Packet Data (CDPD). 

Lin, etal [11] realized several fundamental drawbacks when block codes were in use. First, due to their frame oriented nature,the 

entire code word must be received before decoding can be completed. This introduces an intolerable lateness into the system, 
particularly for large block lengths. A second drawback was that block codes require precise frame synchronization. A third 
drawback was that most algebraic-based decoders for block codes work with hard-bit decisions, rather than with the 
unquantized, or â€œsoftâ€•, outputs of the demodulator. With hard-decision decoding typical for block codes, the output of the 

channel is taken to be binary,while with soft-decision decoding the channel output is continuous-valued. 

According to Lin, etal [11], in order to achieve the performance bounds predicted by Shannon [1] a continuous-valued channel 
output is required. While block codes can achieve impressive performance, they are typically not very power efficient, and 
therefore exhibit poor performance when the signal-to-noise ratio is low. The poor performance of block codes at low signal to - 
noise ratios is not a function of the code itself, but a function of the sub optimality of hard-decision decoding. 

Elias [12] introduced convolution codes to solve the drawbacks of block codes. By segmenting data into distinct blocks, 
convolution codes add redundancy to a continuous stream of input data by using a linear shift register. Each set of n  output bits 

is a linear combination of the current set of k  input bits and the m  bits stored in the shift register. The total number of bits that 

each output depends on is called the constraint length, and denoted by c . The rate of the convolution encoder is the number 

of data bits   taken in by the encoder in one coding interval, divided by the number of code bits n  output during the same 

interval. Just as the data is continuously encoded,it can also be continuously decoded. 

Convolution codes have been used by several deep space exploration such as Voyager and Pioneer. According to Odenwalder 
[13] a sub class of convolution codes has become a standard for commercial satellite communication applications. Berlekamp 
[10] noted that all of the second generation digital cellular standards incorporate convolution coding. 

The major weakness of convolution codes is their susceptibility to burst errors. Convolution codes have properties that are 
complimentary to those of Reed-Solomon codes [9]. While convolution codes are susceptible to burst errors, RS codes handle 
burst errors quite well, Wicker [4]. Ungerboeck [14] discovered Trellis Coded Modulation (TCM) which use convolution codes and 
multidimensional signal constellations to achieve reliable communications over band limited channels. TCM have enabled 
telephone modems to break the 9600 bits per second (bps) barrier, and today all high speed modems use TCM. They are also 
used for satellite communication applications, Wicker [4]. TCM comes remarkably close to achieving Shannon’s promise of 
reliable communications at channel capacity, and is now used for channels with high signal to noise ratio that require high 
bandwidth efficiency. Berrou and Glavieux [15] discovered Turbo codes. The performance of Turbo codes has helped in 
narrowing the gap between practical coding systems and Shannon’s theoretical limit. A turbo code is the parallel concatenation 
of two or more component codes. In its original form, the constituent codes were from a subclass of convolution codes. Due to 
the presence of the inter leaver, optimal (maximal likelihood) decoding of turbo codes is complicated and therefore impractical. It 
is the decoding method that gives turbo codes their name, since the feedback action of the decoder resembles that of a 
turbo-charged engine. Turbo codes approach the capacity limit much more closely than any of the other codes. 

Shannon’s model [1] was developed using error coding techniques based on algebraic coding theory. According to his Theorem 
"Given a code with a code rate that is less than the communication channel capacity , a code exists for a block length of n  bits, 

with code rate that can be transmitted over the channel with an arbitrarily small probability of error". Theoretically, we should be 
able to devise a coding scheme for a particular communication channel for any error rate, but no one has been able to develop a 
block code that satisfies Shannon’s Theorem. While many previous results for polynomial effectiveness have been published, no 
previous work has attempted to achieve complete screening of all possible polynomials for error control. According to Castagnoli 
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etal [7] polynomial’s effectiveness is evaluated by computing weights for that polynomial. A critical measurement of polynomial 
effectiveness for general purpose computing is the HD. Each undetectable error pattern is itself a codeword. This also means 
that determining the minimum HD for a polynomial is equivalent to determining the lowest non-zero weight for that polynomial. 
Furthermore, the weights of a polynomial give the number of undetectable errors for corresponding numbers of bit errors. 

The candidate polynomials considered in this paper are ideals of the polynomial ring    12 nn xmodxF  with 311  n . 

Castagnoli etal [7] utilized Fujiwara’s [16] techniques to evaluate the weights of polynomials that had been carefully selected 
based on prime factorization characteristics. Lin and Costello [17] conjectured that there must be techniques for error control 
coding that could provide the best code. Alderson [18] introduced one of the techniques of using Geometric construction on 
optimal optical orthogonal codes. 

Koopman [19] provided a standard for describing previous work and expected results. He recommended the following shorthand 

notation to represent factorization of a polynomial: },..,{ 1 kdd , where each ""d  represents the degree of a factor. Thus 

"{1,5,29}"  represents the set of all polynomials whose irreducible factorization is: â  (i.e., has irreducible factors of 

degrees 1, 5, and 29). 

Prange [6] showed that under polynomial addition, the polynomial rendering of a cyclic code is an ideal of some ring. This 
correspondence opened the way for the application of algebra to cyclic code. Fujiwara etal [16] developed cyclic codes based 
upon polynomials over finite fields. 

Projective geometry and Shannon’s Theorem have been used to determine and characterize the required types of ideals. 
Geometrical constructions of the code region has also been used to define a region which can provide these codes. Principal 
ideals which form the generator element in the polynomial ring were found very useful in this study. This research was primarily 
a determination and characterization of principal ideals of the polynomial ring which provide codes that satisfy Shannon 
Theorem. 

Charles [20] improved on Prange’s [6] work to show that polynomial addition and multiplication of cyclic codes were closed in 
polynomial rings. His work could also be used to confirm that the polynomial rendering of a cyclic code is an ideal of the 
polynomial ring . 

According to Peterson and Weldon [21] a code can only be useful for computer application if and only if it is expressed in binary 
form or easily convertible into binary symbols. To be used for error detection a given polynomial code must have both a generator 
polynomial and a check polynomial. 

Over the years the desire to reconcile efficiency and reliability of various code vectors has motivated researchers into this area of 
study. An exhaustive search for codes of ideals of polynomial rings has not been done. According to Castagnoli etal [7] there 
might be other forms of polynomials not explored which provide other similarly useful error detection and error correction 
capabilities. Internet Engineering Task Force (IETF) [22] filtered cyclic redundancy codes within the code region of 32-bit for 
greater HD. It singled out a class of polynomials of {1,3,28} with HD=6 as the best polynomial for the purpose of preserving 
message length while detecting errors at the same time. This was however a CRC Code and could not be used for error 
correction. 

To date it is regrettable that no block code has been developed that precisely meets the promise of Shannon [1] of reconciling 
efficiency and reliability.  

2  The Results 

Definition 2.1 

A nonempty subset I  of a ring    12 nn xmodxF  shall be called an ideal of    12 nn xmodxF  if and 

only if: 

(i ) I0  

(ii) Iba  ,  , Iba   

(iii) Ia  and    12  nn xmodxFr , Ira  . 

The ring    12 nn xmodxF  itself and the subset consisting of 0  alone, which we denote by 

{0}, are ideals in this ring called trivial or improper ideals. An ideal    12  nn xmodxFI  shall be 

called a proper ideal. 
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Since    12 nn xmodxF  is commutative, ar  = ra , hence we need only check that ra  I . 

We say that an ideal I  has closure since ba   I  ba,  I . We say that an ideal I  absorbs 

elements from    12 nn xmodxF , since arra,  I  a  I  and r       12 nn xmodxF . 

Proposition 2.2 

A linear code C  of length n  over    12 nn xmodxF  is cyclic if and only if C  satisfies the 

following two conditions: 

(i) If )(xa  and )(xb  are code polynomials in C  , then )()( xbxa   C  

(ii) If )(xa  is a code polynomial in C  and )(xr  is any polynomial      12 nn xmodxF  of 

degree less than n , then )()( xaxr  C   

Proof 

Suppose C  is a cyclic code of length n  over    12 nn xmodxF , then C  is linear, so Condition (i) 

holds. 

Let )(xa  C  and )(xr  = 1... 110  

n

n xrxrr , where ir       12 nn xmodxF . Multiplication of a 

code polynomial by x  corresponds to a right cyclic shift of the corresponding codeword. Since C  is 

a cyclic code, it contains the cyclic shifts of all codewords, so )(xxa  C  . Similarly, )(xcxi , (for 

)<<0 ni , is the thi  cyclic shift of )(xc , so ix  )(xc  C  . Now, by the linearity of C  , )()( xaxr  = 

0r  )(xa  + )(1 xxar  + ... + 1

1





n

n xr Cxa )(  since each summand is in C  . 

Therefore, condition (ii) also holds. So if C  is a cyclic code, then conditions (i) and (ii) hold. 

Conversely, suppose that conditions (i) and (ii) hold. Take )(xr  to be a scalar    12  nn xmodxF . The 

conditions imply that C  is a linear code. Then, if we take )(xr  = x , condition (ii) implies that C  is 

a cyclic code. Hence, if conditions (i) and (ii) hold, then C  is a cyclic code.  

Proposition 2.3 

Polynomial codes of length n  over  xF n

2  correspond to ideals in the ring    12 nn xmodxF   

Proof 

Suppose C  is a polynomial code of length n  over  xF n

2 . Then, the corresponding set of code 

polynomials )(CI  is contained in    12 nn xmodxF  since the polynomials are of degree less than n  

over  xF n

2 . By Definition 2.1, to show that )(CI  forms an ideal in    12 nn xmodxF , we must show 

that: 

(i) )(0 CI  

(ii) )()( xdxc     )(CI  for any code polynomials )(xc  and )(xd  in )(CI ; and 

(iii) )()( xcxr    )(CI  for any polynomial )(xr    xF n

2  1)/( nx  and )(xc   )(CI . 

By definition, the ring    12 nn xmodxF  itself and the subset consisting of 0  alone, which we 
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denote by {0}, are ideals in this ring called trivial or improper ideals. By Proposition 2.2 every cyclic 

code C  does indeed satisfy conditions (ii) and (iii). 

On the other hand, suppose that I  is an ideal in    12 nn xmodxF . Then its elements are 

polynomials of degree less than n , and by Definition, its elements satisfy (ii) )()( xbxa     I   

)(),( xbxa    I ; and (iii) )()( xaxr    I   )(xr       12 nn xmodxF  and   )(xa    I . 

Proposition 2.2 then shows that the set of polynomials )(CI  represent code polynomials of a cyclic 

code. Therefore, polynonial codes of length n  over  xF n

2  are ideals in the ring   1)(2 nn xmodexF .  

Proposition 2.4 [23] 

A code C  of length n over ][2 xF n mod 1)( nx  can detect t errors if and only if 1)(  td c  . The 

code C  can correct t  errors if and only if 12)(  td c . 

Table 2.5: Generator Polynomials of  1][ 3030

2 xmodxF  

 

   
Generator 
Polynomial   

  
Corresponding 
Codeword   

  

000000000000

000000000000

000000  

1  000000
000000000000
000000000001  

1x   000000
000000000000
000000000011  

12 x    
000000000000
000000000000
000101  

   
Generator 
Polynomial   

  
Corresponding 
Codeword   

12368  xxxx

  

 
000000000000
000000000101
001101  

 
000000000000
000000000000
000111  
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13 x   000000
000000000000
000000001001  

14  xx

  

000000
000000000000
000000011011  

12345  xxxxx

  

000000
000000000000
000000111111  

16 x   000000
000000000000
000001000001  

1245  xxx

  

000000
000000000000
000000110101  

12346  xxxxx

  

000000
000000000000
000001011111  

13456  xxxx

  

000000
000000000000
000001111001  

137  xx

  

000000
000000000000
000010001011  

123478  xxxxx

  

000000
000000000000
000110011101  

123568  xxxxxx

  

000000
000000000000
000101101111  

145789  xxxxx

  

000000
000000000000
001110110001  

1467  xxxx

  

000000
000000000000
010011010011  

1681012  xxxx

  

000000
000000000001
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12  xx

  

010101000001  

1678910111213  xxxxxxxxx

  

000000
000000000011
111111000011  

12614  xxx

  

000000
000000000100
000001000101  

456141617181920 xxxxxxxxx 

 

 

123  xxx

  

000000
000111110100
000001111111  

1261014162024  xxxxxxx

  

000001
000100010100
010001000101  

151921222325262728 xxxxxxxxx 

 

 

1468111213  xxxxxxx

  

011110
111010001011
100101010011  

823242526272829 ... xxxxxxxx 

 

 

1234567  xxxxxxx

  

111111
111111111111
111111111111 

 

124  xx

  

 
000000000000
000000000000
010101  

14  xx

  

 
000000000000
000000000000
010011  

128  xx 000000
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  000000000000
000100000101  

134  xx

  

000000
000000000000
000000011001  

168  xx

  

 
000000000000
000000000101
000001  

1234  xxxx

  

 
000000000000
000000000000
011111  

12368  xxxx

  

 
000000000000
000000000101
001101  

 

The codes in C  are ideals of the polynomial ring    13030

2 xmodxF , 

,(30,31,30)=),,(30,=30,=30,=31,= dmndWnm cc  

By proposition 2.4 this code can detect 29 errors. It can correct 14 errors. It is suitable suitable for error control.  

 

Table 2.6a: Relationship between   and   for  xF 30

2  mod  130 x  

 

   Weight    d    c    c  

  0  0.0000 1.0000  

 1 0.0333 0.9677  

 2 0.0667 0.9333  

 3 0.1000 0.9000  

  4 0.1333 0.8667  

  5 0.1667 0.8333  

  6 0.2000 0.8000  

  7  0.2333 0.7667  

  8  0.2667 0.7333  
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Table 2.6b: Relationship between   and   for  xF 30

2  mod  130 x  

    Weight    d    c    c  

  10  0.3333 0.6667  

 13  0.4333 0.5633  

  17  0.5667 0.4333  

  30  1.000 0.0000  

 

Graph 1: Graph of the Code region of  xF 30

2  mod  130 x   

We could graph in [0,1][0,1] , all pairs ),( cc   determined by some code    12  nn xmodxFC , but some of these 

correspond to codes which are not practical. For instance, the length 1 binary code [0,1]=C  has ),( cc   = (1, 1) but it can 

neither detect nor correct any error. In this paper a code of length n  is suitable for error control if and only if 3n . The results 

become more meaningful when the length n  is large enough. 

Therefore, rather than graph all attainable pairs ),( cc   , we adopt the other extreme and consider only those pairs that can 

be realized by codes of arbitrarily large n . The point [0,1][0,1]),(   belongs to the code region if and only if there is a 

sequence )( nC  of codes nC  with unbounded length n  for which )(lim= nn C   and )(lim= nn C   . The 

code region is therefore the set of all accumulation points in [0,1][0,1]  of the graph of determined pairs ),( cc  . 

By Manin’s bound on the Code Region [24], there is a continuous non increasing function mf  on the interval [0, 1] such that the 

point ),(   is in the code region if and only if mf0  . 

If the point ),(   is in the code region, then the code region should contain as well the points , ),(    for  < , 

corresponding to codes with the same rate but smaller distance and also the points ),(    for  < , corresponding to 

codes with the same distance but smaller rate. Thus for any point in the code region, the rectangle with corners 

),(),(0,(0,0),   and ,0)(  should be entirely contained within the code region. Any region with this property has its 

upper boundary function non increasing and continuous. 
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