Unit Groups of Classes of Five Radical Zero Commutative Completely Primary Finite Rings

Hezron Saka Were ${ }^{1^{*}}$, Maurice Oduor Owino ${ }^{2}$ and Moses Ndiritu Gichuki ${ }^{1}$
${ }^{1}$ Department of Mathematics, Egerton University, P.O.Box 536-20115, Egerton, Kenya.
${ }^{2}$ Department of Mathematics and Computer Science, University of Kabianga, P.O.Box 2030-20200, Kericho, Kenya.

Authors' contributions
This work was carried out in collaboration among all authors. Author HSW constructed the rings and determined the structure of the unit groups. Author MOO suggested the ideas on the construction of the rings and outlined the procedure for the determination of the unit groups while the author MNG managed the supervision of the manuscript. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2021/v36i830396
Editor(s):
(1) Dr. Dariusz Jacek Jakóbczak, Koszalin University of Technology, Poland.

Reviewers:
(1) Leonardo Simal Moreira, UniFoa Centro Universitário de Volta Redonda, Brazil.
(2) Mojgan Afkhami, University of Neyshabur, Iran.

Complete Peer review History: https://www.sdiarticle4.com/review-history/73198

Original Research Article

Abstract

In this paper, R is considered a completely primary finite ring and $Z(R)$ is its subset of all zero divisors (including zero), forming a unique maximal ideal. We give a construction of R whose subset of zero divisors $Z(R)$ satisfies the conditions $(Z(R))^{5}=(0) ;(Z(R))^{4} \neq(0)$ and determine the structures of the unit groups of R for all its characteristics.

Keywords: Completely primary finite rings; five radical zero; unit groups.
2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

[^0]
1 Introduction

A comprehensive study on completely primary finite rings can be traced back to Raghavendran's publication [1]. Other related studies can be obtained from $[2,3,4,5,6]$. We shall denote the Jacobson radical of a completely primary finite ring R by $Z(R)$ while the rest of notations used in this paper are standard. The classification of finite rings is still inconclusive with some few expositions on the structures of unit groups and zero divisors of constructed rings. Chikunji in $[7,8]$ obtained the structures of group of units of classes of completely primary finite rings in which the product of any three zero divisors is zero. In [6], the authors determined the structure of the unit groups of completely primary finite rings in which the product of any four zero divisors is zero. We now construct a class of completely primary finite rings in which $(Z(R))^{5}=(0)$ with $(Z(R))^{4} \neq(0)$ and classify their group of units.

2 Preliminaries

The following are fundamental to the construction of a class of completely primary finite rings as well as classification of their unit groups in this paper.
a) A completely primary finite ring is a ring in which the set $Z(R)$ of all zero divisors forms a unique maximal ideal [2]. For more information on these rings, the reader is referred to [1].
b) Let R be a finite ring. Then there is no distinction between left and right zero divisors and every element is either a zero divisor or a unit [4, section 4].
c) Let R be a finite ring with multiplicative identity $1 \neq 0$, whose set of zero divisors form an additive group $Z(R)$. Then:
(i) $Z(R)$ is the Jacobson radical of R;
(ii) $|R|=p^{k r}$ and $|Z(R)|=p^{(k-1) r}$ for some prime p and some positive integers k, r;
(iii) $(Z(R))^{n}=(0)$;
(iv) The characteristic of the ring R is p^{n} for some integer n with $1 \leq n \leq k$ and if the characteristic is p^{k}, then R will be commutative. This is basically Theorem 2 of [1]
d) Let R be as in (c) above and let $\operatorname{Char} R=p^{k}$. Then R has a coefficient subring $R_{0}=G R\left(p^{k r}, p^{k}\right)$ with Char $R_{0}=\operatorname{Char} R$ and $R_{0} / p R_{0}$ equals to $R / Z(R) . R_{0}$ is clearly a maximal subring of $R[3$, Section 1].
e) Let R be a completely primary finite ring (not necessarily commutative). Then the group of units R^{*} of R contains a cyclic subgroup $\langle b\rangle$ of order $p^{r}-1$, and R^{*} is a semi direct product of $1+Z(R)$ and $\langle b\rangle$ [8, Proposition 2.1].
Remark 2.1. From (c) and (d) above, it is clear that if $(Z(R))^{5}=(0)$ with $(Z(R))^{4} \neq(0)$, then the characteristic of R is $p^{k}, 1 \leq k \leq 5$.

3 Results

3.1 Construction of five radical zero commutative completely primary finite rings

Let $R_{0}=G R\left(p^{k r}, p^{k}\right)$ be a Galois ring of order $p^{k r}$ and characteristic p^{k} where p is a prime integer, $1 \leq k \leq 5$ and $r \in \mathbb{Z}^{+}$. Suppose U, V, W and Y are $R_{0} / p R_{0}$ - spaces considered as R_{0} modules generated by e, f, g and h elements, respectively, such that the corresponding generating sets are
$\left\{u_{1}, \ldots, u_{e}\right\}, \quad\left\{v_{1}, \ldots, v_{f}\right\}, \quad\left\{w_{1}, \ldots, w_{g}\right\}$ and $\left\{y_{1}, \ldots, y_{h}\right\}$ so that $R=R_{0} \bigoplus U \bigoplus V \bigoplus W \bigoplus Y$ is an additive abelian group. Then on the additive group, we define multiplication by the following relations:
(i) If $k=1$, then

$$
\begin{gathered}
u_{i} u_{i^{\prime}}=u_{i^{\prime}} u_{i}=v_{j}, \quad u_{i} v_{j}=v_{j} u_{i}=w_{k}, \quad u_{i} w_{k}=w_{k} u_{i}=y_{l}, \quad u_{i} y_{l}=y_{l} u_{i}=0 \\
v_{j} v_{j^{\prime}}=v_{j^{\prime}} v_{j}=y_{l}, \quad v_{j} w_{k}=w_{k} v_{j}=0, \quad v_{j} y_{l}=y_{l} v_{j}=0, \quad w_{k} w_{k^{\prime}}=w_{k^{\prime}} w_{k}=0 \\
w_{k} y_{l}=y_{l} w_{k}=0, \quad y_{l} y_{l^{\prime}}=y_{l^{\prime}} y_{l}=0
\end{gathered}
$$

(ii) If $k=2$, then

$$
\begin{gathered}
u_{i} u_{i^{\prime}}=u_{i^{\prime}} u_{i}=p r_{0}+p u_{i}+v_{j}, u_{i} v_{j}=v_{j} u_{i}=p u_{i}+w_{k}, u_{i} w_{k}=w_{k} u_{i}=p u_{i}+y_{l} \\
u_{i} y_{l}=y_{l} u_{i}=p u_{i}, v_{j} v_{j^{\prime}}=v_{j^{\prime}} v_{j}=y_{l}, v_{j} w_{k}=w_{k} v_{j}=0, v_{j} y_{l}=y_{l} v_{j}=0, w_{k} w_{k^{\prime}}=w_{k^{\prime}} w_{k}=0 \\
w_{k} y_{l}=y_{l} w_{k}=0, y_{l} y_{l^{\prime}}=y_{l^{\prime}} y_{l}=0
\end{gathered}
$$

(iii) If $3 \leq k \leq 5$, then

$$
\begin{gathered}
u_{i} u_{i^{\prime}}=u_{i^{\prime}} u_{i}=p^{2} r_{0}+p u_{i}+v_{j}, \quad u_{i} v_{j}=v_{j} u_{i}=p^{2} r_{0}+p u_{i}+p v_{j}+w_{k} \\
u_{i} w_{k}=w_{k} u_{i}=p^{2} r_{0}+p u_{i}+p w_{k}+y_{l}, \quad u_{i} y_{l}=y_{l} u_{i}=p^{2} r_{0}+p u_{i} \\
v_{j} v_{j^{\prime}}=v_{j^{\prime}} v_{j}=p^{2} r_{0}+p v_{j}+y_{l}, \quad v_{j} w_{k}=w_{k} v_{j}=p^{2} r_{0}+p v_{j}+p w_{k}, v_{j} y_{l}=y_{l} v_{j}=p^{2} r_{0}+p v_{j} \\
w_{k} w_{k^{\prime}}=w_{k^{\prime}} w_{k}=p^{2} r_{0}+p w_{k}, \quad w_{k} y_{l}=y_{l} w_{k}=p^{2} r_{0}+p w_{k}, \quad y_{l} y_{l^{\prime}}=y_{l^{\prime}} y_{l}=p^{2} r_{0}
\end{gathered}
$$

Further $u_{i} u_{i^{\prime}} u_{i^{\prime \prime}} u_{i^{\prime \prime \prime}} u_{i^{i v}}=0, \quad u_{i} r_{0}=r_{0} u_{i}, \quad v_{j} r_{0}=r_{0} v_{j}, \quad w_{k} r_{0}=r_{0} w_{k}, y_{l} r_{0}=r_{0} y_{l}, \quad$ where $r_{0} \in R_{0}$ and $1 \leq i, \quad i^{\prime} \leq e, 1 \leq j, \quad j^{\prime} \leq f, 1 \leq k, k^{\prime} \leq g, 1 \leq l, l^{\prime} \leq h$. From the given multiplication in R, we see that if $\quad r_{0}+\sum_{i=1}^{e} r_{i} u_{i}+\sum_{j=1}^{f} s_{j} v_{j}+\sum_{t=1}^{g} t_{k} w_{k}+\sum_{l=1}^{h} z_{l} y_{l}$ and $r_{0}^{\prime}+\sum_{i=1}^{e} r_{i}^{\prime} u_{i}+\sum_{j=1}^{f} s_{j}^{\prime} v_{j}+\sum_{t=1}^{g} t_{k}^{\prime} w_{k}+\sum_{l=1}^{h} z_{l}^{\prime} y_{l} \quad$ are any two elements of R, then

$$
\begin{aligned}
& \left(r_{0}+\sum_{i=1}^{e} r_{i} u_{i}+\sum_{j=1}^{f} s_{j} v_{j}+\sum_{k=1}^{g} t_{k} w_{k}+\sum_{l=1}^{h} z_{l} y_{l}\right)\left(r_{0}^{\prime}+\sum_{i=1}^{e} r_{i}^{\prime} u_{i}+\sum_{j=1}^{f} s_{j}^{\prime} v_{j}+\sum_{t=1}^{g} t_{k}^{\prime} w_{k}+\sum_{l=1}^{h} z_{l}^{\prime} y_{l}\right) \\
& =r_{0} r_{0}^{\prime}+p^{a} \sum_{i, m=1}^{e}\left(r_{i} r_{m}^{\prime}+p R_{0}\right) \\
& +\sum_{i=1}^{e}\left[r_{0} r_{i}^{\prime}+r_{i} r_{0}^{\prime}+p R_{0}\right] u_{i}+\sum_{j=1}^{f}\left[\left(r_{0}+p R_{0}\right) s_{j}^{\prime}+s_{j}\left(r_{0}^{\prime}+p R_{0}\right)+\sum_{\nu, \mu=1}^{e}\left(r_{\nu} r_{\mu}^{\prime}+p R_{0}\right)\right] v_{j} \\
& +\sum_{k=1}^{g}\left[\left(r_{0}+p R_{0}\right) t_{k}^{\prime}+t_{k}\left(r_{0}^{\prime}+p R_{0}\right)+\sum_{i, j}\left(r_{i}+p R_{0}\right) s_{j}^{\prime}+s_{j}\left(r_{i}^{\prime}+p R_{0}\right)\right] w_{k} \\
& +\sum_{l=1}^{h}\left[\left(r_{0}+p R_{0}\right) z_{l}^{\prime}+z_{l}\left(r_{0}^{\prime}+p R_{0}\right)+\sum_{i, k}\left(r_{i}+p R_{0}\right) t_{k}^{\prime}+t_{k}\left(r_{i}^{\prime}+p R_{0}\right)+\sum_{\kappa, \tau=1}^{f}\left(s_{\kappa} s_{\tau}^{\prime}+p R_{0}\right)\right] y_{l}
\end{aligned}
$$

where $a=1,2,3$, or 4 depending on whether Char $R_{0}=p^{2}, p^{3}, p^{4}$ or p^{5}. It can be verified that this multiplication turns R into a commutative ring with identity 1.

Notice that if $R_{0}=G R\left(p^{r}, p\right)$ where Char $R=p$, then the above multiplication reduces to

$$
\begin{aligned}
& \left(r_{0}+\sum_{i=1}^{e} r_{i} u_{i}+\sum_{j=1}^{f} s_{j} v_{j}+\sum_{k=1}^{g} t_{k} w_{k}+\sum_{l=1}^{h} z_{l} y_{l}\right)\left(r_{0}^{\prime}+\sum_{i=1}^{e} r_{i}^{\prime} u_{i}+\sum_{j=1}^{f} s_{j}^{\prime} v_{j}+\sum_{t=1}^{g} t_{k}^{\prime} w_{k}+\sum_{l=1}^{h} z_{l}^{\prime} y_{l}\right) \\
& =r_{0} r_{0}^{\prime}+\sum_{i=1}^{e}\left[r_{0} r_{i}^{\prime}+r_{i} r_{0}^{\prime}\right] u_{i}+\sum_{j=1}^{f}\left[\left(r_{0}\right) s_{j}^{\prime}+s_{j}\left(r_{0}^{\prime}\right)+\sum_{\nu, \mu=1}^{e}\left(r_{\nu} r_{\mu}^{\prime}\right)\right] v_{j} \\
& +\sum_{k=1}^{g}\left[\left(r_{0}\right) t_{k}^{\prime}+t_{k}\left(r_{0}^{\prime}\right)+\sum_{i, j}\left(r_{i}\right) s_{j}^{\prime}+s_{j}\left(r_{i}^{\prime}\right)\right] w_{k} \\
& +\sum_{l=1}^{h}\left[\left(r_{0}\right) z_{l}^{\prime}+z_{l}\left(r_{0}^{\prime}\right)+\sum_{i, k}\left(r_{i}\right) t_{k}^{\prime}+t_{k}\left(r_{i}^{\prime}\right)+\sum_{\kappa, \tau=1}^{f}\left(s_{\kappa} s_{\tau}^{\prime}\right)\right] y_{l}
\end{aligned}
$$

In the sequel, we use the ideas of Raghavendran [1] and Chikunji [8] to classify the unit groups of the rings constructed in this section. Evidently

$$
\begin{aligned}
Z(R) & =p R_{0} \bigoplus U \bigoplus V \bigoplus W \bigoplus Y \\
& =p R_{0}+\sum_{i=1}^{e} R_{0} u_{i}+\sum_{j=1}^{f} R_{0} v_{j}+\sum_{k=1}^{g} R_{0} w_{k}+\sum_{l=1}^{h} R_{0} y_{l}
\end{aligned}
$$

is a unique maximal ideal of R and

$$
\begin{aligned}
1+Z(R) & =1+p R_{0} \bigoplus U \bigoplus V \bigoplus W \bigoplus Y \\
& =1+p R_{0}+\sum_{i=1}^{e} R_{0} u_{i}+\sum_{j=1}^{f} R_{0} v_{j}+\sum_{k=1}^{g} R_{0} w_{k}+\sum_{l=1}^{h} R_{0} y_{l}
\end{aligned}
$$

and

$$
R^{*}=\left(R^{*} / 1+Z(R)\right) \times(1+Z(R))=\times(1+Z(R))
$$

where

$$
=\left(R^{*} / 1+Z(R)\right)=(R / Z(R))^{*}=\mathbb{F}_{p^{r}}^{*} \cong \mathbb{Z}_{p^{r}-1}
$$

Proposition 3.1. Let R be a completely primary finite ring from the class of finite rings described by the construction and of characteristic p with $p u_{i}=p v_{j}=p w_{k}=p y_{l}=0$. Then the group of units

$$
R^{*} \cong\left\{\begin{array}{rr}
\mathbb{Z}_{2^{r}-1} \times\left(\mathbb{Z}_{8}^{e}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}, & \text { if } p=2 \\
\mathbb{Z}_{3^{r}-1} \times\left(\mathbb{Z}_{9}^{e}\right)^{r} \times\left(\mathbb{Z}_{3}^{f}\right)^{r} \times\left(\mathbb{Z}_{3}^{h}\right)^{r}, & \text { if } p=3 \\
\mathbb{Z}_{p^{r}-1} \times\left(\mathbb{Z}_{p}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}, & \text { if }
\end{array}\right.
$$

Proof. Using the fact that $R^{*} \cong \mathbb{Z}_{p^{r}-1} \times(1+Z(R))$, it suffices to determine the structure of $1+Z(R)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r}$ form a basis for $R_{0} / p R_{0}$ regarded as a vector space over its prime subfield \mathbb{F}_{p}. We consider the three cases separately.
Case(i): $p=2$. For every $t=1, \ldots, r, \quad\left(1+\varepsilon_{t} u_{i}\right)^{8}=1$ and $\left(1+\varepsilon_{t} w_{k}\right)^{2}=1$. For non-negative integers α_{t} and λ_{t} with $\alpha_{t} \leq 2$, and $\lambda_{t} \leq 8$, it is clear that

$$
\prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\lambda_{t}}\right\} \cdot \prod_{k=1}^{g} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\alpha_{t}}\right\}=\{1\}
$$

This indicates that $\lambda_{t}=8$ and $\alpha_{t}=2$ for all $t=1, \ldots, r$.
Suppose
$A_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\lambda}: \lambda=1, \ldots, 8 ; \forall t=1, \ldots, r\right\}$ and
$B_{t k}=\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\alpha}: \alpha=1,2 ; \forall t=1, \ldots, r\right\}$,
then $A_{t i}$ and $B_{t k}$ are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of the cyclic subgroups $<1+\varepsilon_{t} u_{i}>$ and $<1+\varepsilon_{t} w_{k}>$ gives the identity group and that

$$
\left|\prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>\right|
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}> \\
& \cong\left(\mathbb{Z}_{8}^{e}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}
\end{aligned}
$$

Case(ii): $p=3$. For every $t=1, \ldots, r,\left(1+\varepsilon_{t} u_{i}\right)^{9}=1,\left(1+\varepsilon_{t} v_{j}\right)^{3}=1$ and $\left(1+\varepsilon_{t} y_{l}\right)^{3}=1$. For non-negative integers λ_{t}, α_{t} and φ_{t} with $\lambda_{t} \leq 9, \alpha_{t} \leq 3$ and $\varphi_{t} \leq 3$, it is clear that

$$
\prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\lambda_{t}}\right\} \cdot \prod_{j=1}^{f} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\alpha_{t}}\right\} \cdot \prod_{l=1}^{h} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\varphi_{t}}\right\}=\{1\}
$$

This indicates that $\lambda_{t}=9, \alpha_{t}=3$ and $\varphi_{t}=3$ for all $t=1, \ldots, r$.
Suppose
$A_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\lambda}: \lambda=1, \ldots, 9 ; \forall t=1, \ldots, r\right\}$,
$B_{t j}=\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\alpha}: \alpha=1,2,3 ; \forall t=1, \ldots, r\right\}$, and
$C_{t l}=\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\varphi}: \varphi=1,2,3 ; \forall t=1, \ldots, r\right\}$,
then $A_{t i}, \quad B_{t j}$ and $C_{t l}$ are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups $<1+\varepsilon_{t} u_{i}>$,$\quad<1+\varepsilon_{t} v_{j}>$, and $<1+\varepsilon_{t} y_{l}>$ gives the identity group and that

$$
\left|\prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>|\cdot| \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}>\right|
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>\times \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}> \\
& \cong\left(\mathbb{Z}_{9}^{e}\right)^{r} \times\left(\mathbb{Z}_{3}^{f}\right)^{r} \times\left(\mathbb{Z}_{3}^{h}\right)^{r}
\end{aligned}
$$

Case(iii): $p>3$. For every $t=1, \ldots, r,\left(1+\varepsilon_{t} u_{i}\right)^{p}=1, \quad\left(1+\varepsilon_{t} v_{j}\right)^{p}=1, \quad\left(1+\varepsilon_{t} w_{k}\right)^{p}=1$, and $\left(1+\varepsilon_{t} y_{l}\right)^{p}=1$. For non-negative integers $\alpha_{t}, \quad \varphi_{t}, \quad \delta_{t}$ and λ_{t} with $\alpha_{t} \leq p, \varphi_{t} \leq p, \quad \delta_{t} \leq p$ and $\lambda_{t} \leq p$, it is clear that

$$
\prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\alpha_{t}}\right\} \cdot \prod_{j=1}^{f} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\varphi_{t}}\right\} \cdot \prod_{k=1}^{g} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\delta_{t}}\right\} \cdot \prod_{l=1}^{h} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\lambda_{t}}\right\}=\{1\}
$$

This indicates that $\alpha_{t}=p, \varphi_{t}=p, \quad \delta_{t}=p$ and $\lambda_{t}=p$ for all $t=1, \ldots, r$.
Suppose
$A_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\alpha}: \alpha=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
$B_{t j}=\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\varphi}: \varphi=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
$C_{t k}=\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\delta}: \delta=1, \ldots, p ; \forall t=1, \ldots, r\right\}$, and
$D_{t l}=\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\lambda}: \lambda=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
then $A_{t i}, B_{t j}, C_{t k}$ and $D_{t l}$ are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups $\left.<1+\varepsilon_{t} u_{i}>,<1+\varepsilon_{t} v_{j}>,<1+\varepsilon_{t} w_{k}\right\rangle$ and $<1+\varepsilon_{t} y_{l}>$ gives the identity group and that

$$
\left|\prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>|\cdot| \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>|\cdot| \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}>\right|
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>\times \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>\times \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}> \\
& \cong\left(\mathbb{Z}_{p}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}
\end{aligned}
$$

Proposition 3.2. Let R be a completely primary finite ring from the class of finite rings described by the construction and of characteristic p^{2} with $p u_{i}=p v_{j}=p w_{k}=p y_{l}$. Then the group of units

$$
R^{*} \cong\left\{\begin{array}{rr}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{8}^{e}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}, & \text { if } p=2 \\
\mathbb{Z}_{3^{r}-1} \times \mathbb{Z}_{3}^{r} \times\left(\mathbb{Z}_{9}^{e}\right)^{r} \times\left(\mathbb{Z}_{3}^{f}\right)^{r} \times\left(\mathbb{Z}_{3}^{h}\right)^{r}, & \text { if } p=3 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p}^{r} \times\left(\mathbb{Z}_{p}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}, & \text { if } \quad p>3
\end{array}\right.
$$

Proof. Using the fact that $R^{*} \cong \mathbb{Z}_{p^{r}-1} \times(1+Z(R))$, it suffices to determine the structure of $1+Z(R)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r}$ form a basis for $R_{0} / p R_{0}$ regarded as a vector space over its prime subfield \mathbb{F}_{p}. We consider the three cases separately: Case (i): $p=2$. For every $t=1, \ldots, r,\left(1+2 \varepsilon_{t}\right)^{2}=1,\left(1+\varepsilon_{t} u_{i}\right)^{8}=1$, and $\left(1+\varepsilon_{t} w_{k}\right)^{2}=1$. For non-negative integers α_{t}, λ_{t} and δ_{t} with $\alpha_{t} \leq 2, \lambda_{t} \leq 8$ and $\delta_{t} \leq 2$, it is clear that

$$
\prod_{t=1}^{r}\left\{\left(1+2 \varepsilon_{t}\right)^{\alpha_{t}}\right\} \cdot \prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\lambda_{t}}\right\} \cdot \prod_{k=1}^{g} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\delta_{t}}\right\}=\{1\}
$$

This indicates that $\alpha_{t}=2, \lambda_{t}=8$ and $\delta_{t}=2$ for all $t=1, \ldots, r$.
Suppose
$A_{t}=\left\{\left(1+2 \varepsilon_{t}\right)^{\alpha}: \alpha=1,2 ; \forall t=1, \ldots, r\right\}$,
$B_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\lambda}: \lambda=1, \ldots, 8 ; \forall t=1, \ldots, r\right\}$, and
$C_{t k}=\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\delta}: \delta=1,2 ; \forall t=1, \ldots, r\right\}$,
then $A_{t}, B_{t i}$ and $C_{t k}$ are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups $<1+2 \varepsilon_{t}>$, $<1+\varepsilon_{t} u_{i}>$, and $<1+\varepsilon_{t} w_{k}>$ gives the identity group and that

$$
\left|\prod_{t=1}^{r}<1+2 \varepsilon_{t}>|\cdot| \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>\right|
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{t=1}^{r}<1+2 \varepsilon_{t}>\times \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}> \\
& \cong \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{8}^{e}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}
\end{aligned}
$$

Case(ii): $p=3$. For every $t=1, \ldots, r,\left(1+3 \varepsilon_{t}\right)^{3}=1, \quad\left(1+\varepsilon_{t} u_{i}\right)^{9}=1, \quad\left(1+\varepsilon_{t} v_{j}\right)^{3}=1$, and $\left(1+\varepsilon_{t} y_{l}\right)^{3}=1$. For non-negative integers $\alpha_{t}, \quad \varphi_{t}, \quad \delta_{t}$ and λ_{t} with $\alpha_{t} \leq 3, \varphi_{t} \leq 3, \quad \delta_{t} \leq 3$ and $\lambda_{t} \leq 9$, it is clear that

$$
\prod_{t=1}^{r}\left\{\left(1+3 \varepsilon_{t}\right)^{\delta_{t}}\right\} \cdot \prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\lambda_{t}}\right\} \cdot \prod_{j=1}^{f} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\varphi_{t}}\right\} \cdot \prod_{l=1}^{h} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\alpha_{t}}\right\}=\{1\}
$$

This indicates that $\alpha_{t}=3, \lambda_{t}=9, \delta_{t}=3$ and $\varphi_{t}=3$ for all $t=1, \ldots, r$.
Suppose
$A_{t}=\left\{\left(1+3 \varepsilon_{t}\right)^{\delta}: \delta=1,2,3 ; \forall t=1, \ldots, r\right\}$,
$B_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\lambda}: \lambda=1, \ldots, 9 ; \forall t=1, \ldots, r\right\}$,
$C_{t j}=\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\varphi}: \varphi=1,2,3 ; \forall t=1, \ldots, r\right\}$, and
$D_{t l}=\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\alpha}: \alpha=1,2,3 ; \forall t=1, \ldots, r\right\}$,
then $A_{t}, B_{t i}, C_{t j}$ and $D_{t l}$ are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups $\left\langle 1+3 \varepsilon_{t}\right\rangle, \quad\left\langle 1+\varepsilon_{t} u_{i}\right\rangle,\left\langle 1+\varepsilon_{t} v_{j}\right\rangle$ and $\left\langle 1+\varepsilon_{t} y_{l}\right\rangle$ gives the identity group and that

$$
\left|\prod_{t=1}^{r}<1+3 \varepsilon_{t}>|\cdot| \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>|\cdot| \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}>\right|
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{t=1}^{r}<1+3 \varepsilon_{t}>\times \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>\times \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}> \\
& \cong \mathbb{Z}_{3}^{r} \times\left(\mathbb{Z}_{9}^{e}\right)^{r} \times\left(\mathbb{Z}_{3}^{f}\right)^{r} \times\left(\mathbb{Z}_{3}^{h}\right)^{r}
\end{aligned}
$$

Case(iii): $p>3$. For every $t=1, \ldots, r,\left(1+p \varepsilon_{t}\right)^{p}=1, \quad\left(1+\varepsilon_{t} u_{i}\right)^{p}=1, \quad\left(1+\varepsilon_{t} v_{j}\right)^{p}=1$, $\left(1+\varepsilon_{t} w_{k}\right)^{p}=1$, and $\left(1+\varepsilon_{t} y_{l}\right)^{p}=1$. For non-negative integers $\alpha_{t}, \quad \varphi_{t}, \quad \delta_{t}, \quad \beta_{t}$ and λ_{t} such that $\alpha_{t} \leq p, \varphi_{t} \leq p, \quad \delta_{t} \leq p, \beta_{t} \leq p$ and $\lambda_{t} \leq p$, it is clear that

$$
\begin{aligned}
& \prod_{t=1}^{r}\left\{\left(1+p \varepsilon_{t}\right)^{\alpha_{t}}\right\} \cdot \prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi_{t}}\right\} \cdot \prod_{j=1}^{f} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\delta_{t}}\right\} \cdot \prod_{k=1}^{g} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\beta_{t}}\right\} . \\
& \prod_{l=1}^{h} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\lambda_{t}}\right\}=\{1\}
\end{aligned}
$$

This indicates that $\alpha_{t}=p, \lambda_{t}=p, \delta_{t}=p, \beta_{t}=p$ and $\varphi_{t}=p$ for all $t=1, \ldots, r$.
Suppose
$A_{t}=\left\{\left(1+p \varepsilon_{t}\right)^{\alpha}: \alpha=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
$B_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi}: \varphi=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
$C_{t j}=\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\delta}: \delta=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
$D_{t k}=\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\beta}: \beta=1, \ldots, p ; \forall t=1, \ldots, r\right\}$, and
$E_{t l}=\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\lambda}: \lambda=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
then $A_{t}, B_{t i}, C_{t j}, D_{t k}$ and $E_{t l}$ are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups $\left.<1+p \varepsilon_{t}>,<1+\varepsilon_{t} u_{i}\right\rangle,<1+\varepsilon_{t} v_{j}>,<1+\varepsilon_{t} w_{k}>$ and $<1+\varepsilon_{t} y_{l}>$ gives the identity group and that

$$
\begin{aligned}
& \left|\prod_{t=1}^{r}<1+p \varepsilon_{t}>|\cdot| \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>|\cdot| \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>\right| \cdot \\
& \left|\prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}>\right|
\end{aligned}
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{t=1}^{r}<1+p \varepsilon_{t}>\times \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>\times \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>\times \\
& \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}> \\
& \cong \mathbb{Z}_{p}^{r} \times\left(\mathbb{Z}_{p}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}
\end{aligned}
$$

Proposition 3.3. Let R be a completely primary finite ring from the class of finite rings described by the construction and of characteristic p^{2} with $p^{2} u_{i}=p v_{j}=p w_{k}=p y_{l}=0$. Then the group of units

$$
R^{*} \cong\left\{\begin{array}{rr}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{e}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r} \times\left(\mathbb{Z}_{8}^{e+f}\right)^{r}, & \text { if } p=2 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p}^{r} \times\left(\mathbb{Z}_{p^{2}}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}, & \text { if } \quad p \neq 2
\end{array}\right.
$$

Proof. Since $R^{*} \cong \mathbb{Z}_{p^{r}-1} \times(1+Z(R))$, it suffices to determine the structure of $1+Z(R)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r}$ form a basis for $R_{0} / p R_{0}$ regarded as a vector space over its prime subfield \mathbb{F}_{p}. Then the generators with their respective orders are as indicated below:

Case(i): For $p=2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g$, the generators are $1+2 \varepsilon_{t}$ of order $2 ; 1+2 \varepsilon_{t} u_{i}$ of order $2 ; 1+\varepsilon_{t} w_{k}$ of order 2 and $1+\varepsilon_{t} u_{i}+\varepsilon_{t} v_{j}$ of order 8 . The rest of the proof is similar to the proof of Proposition 3.2.

Case(ii): For $p \neq 2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g, 1 \leq l \leq h$, the generators are $1+p \varepsilon_{t}$ of order $p, 1+\varepsilon_{t} u_{i}$ of order $p^{2}, 1+\varepsilon_{t} v_{j}$ of order $p, 1+\varepsilon_{t} w_{k}$ of order p and $1+\varepsilon_{t} y_{l}$ of order p. The rest of the proof is similar to the proof of Proposition 3.2.

Proposition 3.4. Let R be a completely primary finite ring from the class of finite rings described by the construction and of characteristic p^{3} with $p u_{i}=p v_{j}=p w_{k}=p y_{l}=0$. Then the group of units

$$
R^{*} \cong\left\{\begin{array}{rr}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{8}^{e}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}, & \text { if } p=2 \\
\mathbb{Z}_{3^{r}-1} \times \mathbb{Z}_{9}^{r} \times\left(\mathbb{Z}_{9}^{e}\right)^{r} \times\left(\mathbb{Z}_{3}^{f}\right)^{r} \times\left(\mathbb{Z}_{3}^{h}\right)^{r}, & \text { if } p=3 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p}^{r} \times\left(\mathbb{Z}_{p}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r} \times\left(\mathbb{Z}_{p}^{e+f}\right)^{r}, & \text { if } \quad p>3
\end{array}\right.
$$

Proof. Using the fact that $R^{*} \cong \mathbb{Z}_{p^{r}-1} \times(1+Z(R))$, it suffices to determine the structure of $1+Z(R)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r}$ form a basis for $R_{0} / p R_{0}$ regarded as a vector space over its prime subfield \mathbb{F}_{p}. We consider three cases separately:

Case(i): $p=2$. For every $t=1, \ldots, r,\left(1+2 \varepsilon_{t}\right)^{2}=1,\left(1+4 \varepsilon_{t}\right)^{2}=1,\left(1+\varepsilon_{t} u_{i}\right)^{8}=1$, and $\left(1+\varepsilon_{t} w_{k}\right)^{2}=1$. For non-negative integers $\alpha_{t}, \delta_{t}, \varphi_{t}$ and λ_{t} with $\alpha_{t} \leq 2, \delta_{t} \leq 2, \varphi_{t} \leq 8$ and $\lambda_{t} \leq 2$, it is clear that

$$
\prod_{t=1}^{r}\left\{\left(1+2 \varepsilon_{t}\right)^{\alpha_{t}}\right\} \cdot \prod_{t=1}^{r}\left\{\left(1+4 \varepsilon_{t}\right)^{\delta_{t}}\right\} \cdot \prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi_{t}}\right\} \cdot \prod_{k=1}^{g} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\lambda_{t}}\right\}=\{1\}
$$

This indicates that $\alpha_{t}=2, \delta_{t}=2, \varphi_{t}=8$ and $\lambda_{t}=2$ for all $t=1, \ldots, r$.
Suppose
$A_{t}=\left\{\left(1+2 \varepsilon_{t}\right)^{\alpha}: \alpha=1,2 ; \forall t=1, \ldots, r\right\}$,
$B_{t}=\left\{\left(1+4 \varepsilon_{t}\right)^{\delta}: \delta=1,2 ; \forall t=1, \ldots, r\right\}$,
$C_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi}: \varphi=1, \ldots, 8 ; \forall t=1, \ldots, r\right\}$, and
$D_{t k}=\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\lambda}: \lambda=1,2 ; \forall t=1, \ldots, r\right\}$,
then $A_{t}, B_{t}, C_{t i}$ and $D_{t k}$ are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups $\left.\left.<1+2 \varepsilon_{t}\right\rangle,<1+4 \varepsilon_{t}\right\rangle,<1+\varepsilon_{t} u_{i}>$ and $<1+\varepsilon_{t} w_{k}>$ gives the identity group and that

$$
\left|\prod_{t=1}^{r}<1+2 \varepsilon_{t}>|\cdot| \prod_{t=1}^{r}<1+4 \varepsilon_{t}>|\cdot| \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>\right|
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{t=1}^{r}<1+2 \varepsilon_{t}>\times \prod_{t=1}^{r}<1+4 \varepsilon_{t}>\times \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}> \\
& \cong \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{8}^{e}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}
\end{aligned}
$$

Case(ii): $p=3$. For every $t=1, \ldots, r,\left(1+6 \varepsilon_{t}\right)^{9}=1,\left(1+\varepsilon_{t} u_{i}\right)^{9}=1, \quad\left(1+\varepsilon_{t} v_{j}\right)^{3}=1$, and $\left(1+\varepsilon_{t} y_{l}\right)^{3}=1$. For non-negative integers $\alpha_{t}, \lambda_{t}, \varphi_{t}$ and δ_{t} with $\alpha_{t} \leq 3, \lambda_{t} \leq 9, \varphi_{t} \leq 3$ and $\delta_{t} \leq 9$, it is clear that

$$
\prod_{t=1}^{r}\left\{\left(1+6 \varepsilon_{t}\right)^{\delta_{t}}\right\} \cdot \prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\lambda_{t}}\right\} \cdot \prod_{j=1}^{f} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\varphi_{t}}\right\} \cdot \prod_{l=1}^{h} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\alpha_{t}}\right\}=\{1\}
$$

This indicates that $\delta_{t}=9, \lambda_{t}=9, \varphi_{t}=3$ and $\alpha_{t}=3$ for all $t=1, \ldots, r$.
Suppose
$A_{t}=\left\{\left(1+6 \varepsilon_{t}\right)^{\delta}: \delta=1, \ldots, 9 ; \forall t=1, \ldots, r\right\}$,
$B_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\lambda}: \lambda=1, \ldots, 9 ; \forall t=1, \ldots, r\right\}$,
$C_{t j}=\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\varphi}: \varphi=1,2,3 ; \forall t=1, \ldots, r\right\}, \quad$ and
$D_{t l}=\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\alpha}: \alpha=1,2,3 ; \forall t=1, \ldots, r\right\}$,
then $A_{t}, B_{t i}, C_{t j}$ and $D_{t l}$ are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups $\left.\left.\left.<1+6 \varepsilon_{t}\right\rangle,<1+\varepsilon_{t} u_{i}\right\rangle,<1+\varepsilon_{t} v_{j}\right\rangle$ and $<1+\varepsilon_{t} y_{l}>$ gives the identity group and that

$$
\left|\prod_{t=1}^{r}<1+6 \varepsilon_{t}>|\cdot| \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>|\cdot| \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}>\right|
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{t=1}^{r}<1+6 \varepsilon_{t}>\times \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>\times \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}> \\
& \cong \mathbb{Z}_{9}^{r} \times\left(\mathbb{Z}_{9}^{e}\right)^{r} \times\left(\mathbb{Z}_{3}^{f}\right)^{r} \times\left(\mathbb{Z}_{3}^{h}\right)^{r}
\end{aligned}
$$

Case(iii): $p>3$. For every $t=1, \ldots, r,\left(1+p^{2} \varepsilon_{t}\right)^{p}=1,\left(1+\varepsilon_{t} u_{i}\right)^{p}=1,\left(1+\varepsilon_{t} v_{j}\right)^{p}=1$, $\left(1+\varepsilon_{t} w_{k}\right)^{p}=1,\left(1+\varepsilon_{t} y_{l}\right)^{p}=1$, and $\left(1+\varepsilon_{t} u_{i}+\varepsilon_{t} v_{j}\right)^{p}=1$. For non-negative integers $\alpha_{t}, \varphi_{t}, \delta_{t}$, β_{t}, η_{t}, and λ_{t} with $\alpha_{t} \leq p, \varphi_{t} \leq p, \delta_{t} \leq p, \beta_{t} \leq p, \eta_{t} \leq p$, and $\lambda_{t} \leq p$, it is clear that

$$
\begin{aligned}
& \prod_{t=1}^{r}\left\{\left(1+p^{2} \varepsilon_{t}\right)^{\alpha_{t}}\right\} \cdot \prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi_{t}}\right\} \cdot \prod_{j=1}^{f} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\delta_{t}}\right\} \cdot \prod_{k=1}^{g} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\beta_{t}}\right\} \\
& \prod_{l=1}^{h} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\eta_{t}}\right\} \cdot \prod_{j=1}^{f} \prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}+\varepsilon_{t} v_{j}\right)^{\lambda_{t}}\right\}=\{1\}
\end{aligned}
$$

This indicates that $\alpha_{t}=p, \lambda_{t}=p, \varphi_{t}=p, \delta_{t}=p, \beta_{t}=p$, and $\eta_{t}=p$ for all $t=1, \ldots, r$.
Suppose
$A_{t}=\left\{\left(1+p^{2} \varepsilon_{t}\right)^{\alpha}: \alpha=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
$B_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi}: \varphi=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
$C_{t j}=\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\delta}: \delta=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
$D_{t k}=\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\beta}: \beta=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
$E_{t l}=\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\eta}: \eta=1, \ldots, p ; \forall t=1, \ldots, r\right\}$, and
$F_{t i j}=\left\{\left(1+\varepsilon_{t} u_{i}+\varepsilon_{t} v_{j}\right)^{\lambda}: \lambda=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
then $A_{t}, B_{t i}, C_{t j}, D_{t k}, E_{t l}$, and $F_{t i j}$ are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups $\left.\left.\left.<1+p^{2} \varepsilon_{t}\right\rangle,<1+\varepsilon_{t} u_{i}\right\rangle,\left\langle 1+\varepsilon_{t} v_{j}\right\rangle,\left\langle 1+\varepsilon_{t} w_{k}\right\rangle,<1+\varepsilon_{t} y_{l}\right\rangle$, and $\left\langle 1+\varepsilon_{t} u_{i}+\varepsilon_{t} v_{j}\right\rangle$ gives the identity group and that

$$
\begin{aligned}
& \left|\prod_{t=1}^{r}<1+p^{2} \varepsilon_{t}>|\cdot| \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>|\cdot| \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>\right| \\
& \left|\prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}>|\cdot| \prod_{j=1}^{f} \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}+\varepsilon_{t} v_{j}>\right|
\end{aligned}
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{t=1}^{r}<1+p^{2} \varepsilon_{t}>\times \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>\times \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>\times \\
& \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}>\times \prod_{j=1}^{f} \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}+\varepsilon_{t} v_{j}> \\
& \cong \mathbb{Z}_{p}^{r} \times\left(\mathbb{Z}_{p}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r} \times\left(\mathbb{Z}_{p}^{e+f}\right)^{r}
\end{aligned}
$$

Proposition 3.5. Let R be a completely primary finite ring from the class of finite rings described by the construction and of characteristic p^{3} with $p^{2} u_{i}=p v_{j}=p w_{k}=p y_{l}=0$. Then the group of units

$$
R^{*} \cong\left\{\begin{array}{rr}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{e}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r} \times\left(\mathbb{Z}_{8}^{e+f}\right)^{r}, & \text { if } \quad p=2 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{2}}^{r} \times\left(\mathbb{Z}_{p^{2}}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}, \quad \text { if } \quad p \neq 2
\end{array}\right.
$$

Proof. Since $R^{*} \cong \mathbb{Z}_{p^{r}-1} \times(1+Z(R))$, it suffices to determine the structure of $1+Z(R)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r}$ form a basis for $R_{0} / p R_{0}$ regarded as a vector space over its prime subfield \mathbb{F}_{p}. Then the generators with their respective orders are as indicated below:

Case(i): For $p=2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g$, the generators are $1+2 \varepsilon_{t}$ of order $2 ; 1+4 \varepsilon_{t}$ of oder $2,1+2 \varepsilon_{t} u_{i}$ of order $2 ; 1+\varepsilon_{t} w_{k}$ of order 2 and $1+\varepsilon_{t} u_{i}+\varepsilon_{t} v_{j}$ of order 8 . The rest of the proof is similar to the proof of proposition 3.4.

Case(ii):For $p \neq 2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g, 1 \leq l \leq h$, the generators are $1+p \varepsilon_{t}$ of order $p^{2}, 1+\varepsilon_{t} u_{i}$ of order $p^{2}, 1+\varepsilon_{t} v_{j}$ of order $p, 1+\varepsilon_{t} w_{k}$ of order p and $1+\varepsilon_{t} y_{l}$ of order p. The rest of the proof is similar to the proof of Proposition 3.4.

Proposition 3.6. Let R be a completely primary finite ring from the class of finite rings described by the construction and of characteristic p^{3} with $p^{3} u_{i}=p v_{j}=p w_{k}=p y_{l}=0$. Then the group of units

$$
R^{*} \cong\left\{\begin{array}{r}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{8}^{e}\right)^{r} \times\left(\mathbb{Z}_{4}^{f}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}, \quad \text { if } p=2 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{2}}^{r} \times\left(\mathbb{Z}_{p^{3}}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}, \quad \text { if } \quad p \neq 2
\end{array}\right.
$$

Proof. Since $R^{*} \cong \mathbb{Z}_{p^{r}-1} \times(1+Z(R))$, it suffices to determine the structure of $1+Z(R)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r}$ form a basis for $R_{0} / p R_{0}$ regarded as a vector space over its prime subfield \mathbb{F}_{p}. Then the generators with their respective orders are as indicated below:
Case(i): For $p=2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g$, the generators are $1+2 \varepsilon_{t}$ of order $2 ; 1+4 \varepsilon_{t}$ of oder $2,1+\varepsilon_{t} u_{i}$ of order $8 ; 1+\varepsilon_{t} v_{j}$ of order 4 and $1+\varepsilon_{t} w_{k}$ of order 2 . The rest of the proof is similar to the proof of Proposition 3.4.
Case(ii): For $p \neq 2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g, 1 \leq l \leq h$, the generators are $1+p \varepsilon_{t}$ of order $p^{2}, 1+\varepsilon_{t} u_{i}$ of order $p^{3}, 1+\varepsilon_{t} v_{j}$ of order $p, 1+\varepsilon_{t} w_{k}$ of order p and $1+\varepsilon_{t} y_{l}$ of order p. The rest of the proof is similar to the proof of Proposition 3.4.

Proposition 3.7. Let R be a completely primary finite ring from the class of finite rings described by the construction and of characteristic p^{4} with $p u_{i}=p v_{j}=p w_{k}=p y_{l}=0$. Then the group of units

$$
R^{*} \cong\left\{\begin{array}{rr}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{8}^{e}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}, & \text { if } p=2 \\
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{27}^{r} \times\left(\mathbb{Z}_{9}^{e}\right)^{r} \times\left(\mathbb{Z}_{3}^{f}\right)^{r} \times\left(\mathbb{Z}_{3}^{h}\right)^{r}, & \text { if } p=3 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{3}}^{r} \times\left(\mathbb{Z}_{p}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}, & \text { if } \quad p>3
\end{array}\right.
$$

Proof. Using the fact that $R^{*} \cong \mathbb{Z}_{p^{r}-1} \times(1+Z(R))$, it suffices to determine the structure of $1+Z(R)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r}$ form a basis for $R_{0} / p R_{0}$ regarded as a vector space over its prime subfield \mathbb{F}_{p}. We consider the three cases separately:
Case(i): $p=2$. For every $t=1, \ldots, r,\left(1+2 \varepsilon_{t}\right)^{4}=1,\left(1+6 \varepsilon_{t}\right)^{2}=1,\left(1+\varepsilon_{t} u_{i}\right)^{8}=1$, and $\left(1+\varepsilon_{t} w_{k}\right)^{2}=1$. For non-negative integers $\alpha_{t}, \delta_{t}, \varphi_{t}$ and λ_{t} with $\alpha_{t} \leq 4, \delta_{t} \leq 2, \varphi_{t} \leq 8$ and $\lambda_{t} \leq 2$, it is clear that

$$
\prod_{t=1}^{r}\left\{\left(1+2 \varepsilon_{t}\right)^{\alpha_{t}}\right\} \cdot \prod_{t=1}^{r}\left\{\left(1+6 \varepsilon_{t}\right)^{\delta_{t}}\right\} \cdot \prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi_{t}}\right\} \cdot \prod_{k=1}^{g} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\lambda_{t}}\right\}=\{1\}
$$

This indicates that $\alpha_{t}=4, \delta_{t}=2, \varphi_{t}=8$ and $\lambda_{t}=2$ for all $t=1, \ldots, r$.
Suppose
$A_{t}=\left\{\left(1+2 \varepsilon_{t}\right)^{\alpha}: \alpha=1,2,3,4 ; \forall t=1, \ldots, r\right\}$,
$B_{t}=\left\{\left(1+6 \varepsilon_{t}\right)^{\delta}: \delta=1,2 ; \forall t=1, \ldots, r\right\}$,
$C_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi}: \varphi=1, \ldots, 8 ; \forall t=1, \ldots, r\right\}$, and
$D_{t k}=\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\lambda}: \lambda=1,2 ; \forall t=1, \ldots, r\right\}$,
then $A_{t}, B_{t}, C_{t i}$ and $D_{t k}$ are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups $\left.\left.<1+2 \varepsilon_{t}\right\rangle, \quad<1+6 \varepsilon_{t}\right\rangle,\left\langle 1+\varepsilon_{t} u_{i}\right\rangle$, and $\left\langle 1+\varepsilon_{t} w_{k}\right\rangle$ gives the identity group and that

$$
\left|\prod_{t=1}^{r}<1+2 \varepsilon_{t}>|\cdot| \prod_{t=1}^{r}<1+6 \varepsilon_{t}>|\cdot| \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>\right|
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{t=1}^{r}<1+2 \varepsilon_{t}>\times \prod_{t=1}^{r}<1+6 \varepsilon_{t}>\times \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}> \\
& \cong \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{8}^{e}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}
\end{aligned}
$$

Case(ii): $p=3$. For every $t=1, \ldots, r,\left(1+3 \varepsilon_{t}\right)^{27}=1,\left(1+\varepsilon_{t} u_{i}\right)^{9}=1,\left(1+\varepsilon_{t} v_{j}\right)^{3}=1$, and $\left(1+\varepsilon_{t} y_{l}\right)^{3}=1$. For non-negative integers $\alpha_{t}, \varphi_{t}, \delta_{t}$ and λ_{t} with $\alpha_{t} \leq 27, \varphi_{t} \leq 9, \delta_{t} \leq 3$, and $\lambda_{t} \leq 3$, it is clear that

$$
\prod_{t=1}^{r}\left\{\left(1+3 \varepsilon_{t}\right)^{\alpha_{t}}\right\} \cdot \prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi_{t}}\right\} \cdot \prod_{j=1}^{f} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\delta_{t}}\right\} \cdot \prod_{l=1}^{h} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\lambda_{t}}\right\}=\{1\}
$$

This indicates that $\alpha_{t}=27, \lambda_{t}=3, \varphi_{t}=9$ and $\delta_{t}=3$ for all $t=1, \ldots, r$.
Suppose
$A_{t}=\left\{\left(1+3 \varepsilon_{t}\right)^{\alpha}: \alpha=1, \ldots, 27 ; \forall t=1, \ldots, r\right\}$,
$B_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi}: \varphi=1, \ldots, 9 ; \forall t=1, \ldots, r\right\}$,
$C_{t j}=\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\delta}: \delta=1,2,3 ; \forall t=1, \ldots, r\right\}$, and
$D_{t l}=\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\lambda}: \lambda=1,2,3 ; \forall t=1, \ldots, r\right\}$,
then $A_{t}, B_{t i}, C_{t j}$ and $D_{t l}$ are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups $\left.<1+3 \varepsilon_{t}>, \quad<1+\varepsilon_{t} u_{i}\right\rangle,<1+\varepsilon_{t} v_{j}>$, and $<1+\varepsilon_{t} y_{l}>$ gives the identity group and that

$$
\left|\prod_{t=1}^{r}<1+3 \varepsilon_{t}>|\cdot| \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>|\cdot| \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}>\right|
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{t=1}^{r}<1+3 \varepsilon_{t}>\times \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>\times \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}> \\
& \cong \mathbb{Z}_{27}^{r} \times\left(\mathbb{Z}_{9}^{e}\right)^{r} \times\left(\mathbb{Z}_{3}^{f}\right)^{r} \times\left(\mathbb{Z}_{3}^{h}\right)^{r}
\end{aligned}
$$

Case(iii): $p>3$. For every $t=1, \ldots, r,\left(1+p \varepsilon_{t}\right)^{p^{3}}=1,\left(1+\varepsilon_{t} u_{i}\right)^{p}=1,\left(1+\varepsilon_{t} v_{j}\right)^{p}=1,\left(1+\varepsilon_{t} w_{k}\right)^{p}=$ 1 , and $\left(1+\varepsilon_{t} y_{l}\right)^{p}=1$. For non-negative integers $\alpha_{t}, \lambda_{t}, \varphi_{t}, \beta_{t}$, and δ_{t} with $\alpha_{t} \leq p^{3}, \lambda_{t} \leq p, \varphi_{t} \leq p$, $\delta_{t} \leq p$, and $\beta_{t} \leq p$, it is clear that

$$
\begin{aligned}
& \prod_{t=1}^{r}\left\{\left(1+p \varepsilon_{t}\right)^{\alpha_{t}}\right\} \cdot \prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi_{t}}\right\} \cdot \prod_{j=1}^{f} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\delta_{t}}\right\} \cdot \prod_{k=1}^{g} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\beta_{t}}\right\} . \\
& \prod_{l=1}^{h} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\lambda_{t}}\right\}=\{1\}
\end{aligned}
$$

This indicates that $\alpha_{t}=p^{3}, \lambda_{t}=p, \varphi_{t}=p, \delta_{t}=p$, and $\beta_{t}=p$, for all $t=1, \ldots, r$.

Suppose
$A_{t}=\left\{\left(1+p \varepsilon_{t}\right)^{\alpha}: \alpha=1, \ldots, p^{3} ; \forall t=1, \ldots, r\right\}$,
$B_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi}: \varphi=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
$C_{t j}=\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\delta}: \delta=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
$D_{t k}=\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\beta}: \beta=1, \ldots, p ; \forall t=1, \ldots, r\right\}$, and
$E_{t l}=\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\lambda}: \lambda=1, \ldots, p ; \forall t=1, \ldots, r\right\}$
then $A_{t}, \quad B_{t i}, C_{t j}, D_{t k}$, and $E_{t l}$, are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups $\left\langle 1+p \varepsilon_{t}\right\rangle, \quad\left\langle 1+\varepsilon_{t} u_{i}\right\rangle,\left\langle 1+\varepsilon_{t} v_{j}\right\rangle,\left\langle 1+\varepsilon_{t} w_{k}\right\rangle$, and $\left\langle 1+\varepsilon_{t} y_{l}\right\rangle$, gives the identity group and that

$$
\begin{aligned}
& \left|\prod_{t=1}^{r}<1+p \varepsilon_{t}>|\cdot| \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>|\cdot| \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>\right| \\
& \left|\prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}>\right|
\end{aligned}
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{t=1}^{r}<1+p \varepsilon_{t}>\times \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}> \\
& \times \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>\times \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}> \\
& \cong \mathbb{Z}_{p^{3}}^{r} \times\left(\mathbb{Z}_{p}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}
\end{aligned}
$$

Proposition 3.8. Let R be a completely primary finite ring from the class of finite rings described by the construction and of characteristic p^{4} with $p^{2} u_{i}=p v_{j}=p w_{k}=p y_{l}=0$. Then the group of units

$$
R^{*} \cong\left\{\begin{array}{rr}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{e}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r} \times\left(\mathbb{Z}_{8}^{e+f}\right)^{r}, \quad \text { if } \quad p=2 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{3}}^{r} \times\left(\mathbb{Z}_{p^{2}}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}, \quad \text { if } \quad p \neq 2
\end{array}\right.
$$

Proof. Since $R^{*} \cong \mathbb{Z}_{p^{r}-1} \times(1+Z(R))$, it suffices to determine the structure of $1+Z(R)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r}$ form a basis for $R_{0} / p R_{0}$ regarded as a vector space over its prime subfield \mathbb{F}_{p}. Then the generators with their respective orders are as indicated below:

Case(i): For $p=2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g$, the generators are $1+2 \varepsilon_{t}$ of order $4 ; 1+6 \varepsilon_{t}$ of oder $2,1+2 \varepsilon_{t} u_{i}$ of order $2 ; 1+\varepsilon_{t} w_{k}$ of order 2 and $1+\varepsilon_{t} u_{i}+\varepsilon_{t} v_{j}$ of order 8 . The rest of the proof is similar to the proof of Proposition 3.7.

Case(ii): For $p \neq 2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g, 1 \leq l \leq h$, the generators are $1+p \varepsilon_{t}$ of order $p^{3}, 1+\varepsilon_{t} u_{i}$ of order $p^{2}, 1+\varepsilon_{t} v_{j}$ of order $p, 1+\varepsilon_{t} w_{k}$ of order p and $1+\varepsilon_{t} y_{l}$ of order p. The rest of the proof is similar to the proof of Proposition 3.7.

Proposition 3.9. Let R be a completely primary finite ring from the class of finite rings described by the construction and of characteristic p^{4} with $p^{3} u_{i}=p v_{j}=p w_{k}=p y_{l}=0$. Then the group of units

$$
R^{*} \cong\left\{\begin{array}{rr}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{8}^{e}\right)^{r} \times\left(\mathbb{Z}_{4}^{f}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}, & \text { if } p=2 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{3}}^{r} \times\left(\mathbb{Z}_{p^{3}}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}, & \text { if } \quad p \neq 2
\end{array}\right.
$$

Proof. Since $R^{*} \cong \mathbb{Z}_{p^{r}-1} \times(1+Z(R))$, it suffices to determine the structure of $1+Z(R)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r}$ form a basis for $R_{0} / p R_{0}$ regarded as a vector space over its prime subfield \mathbb{F}_{p}. Then the generators with their respective orders are as indicated below:

Case(i): For $p=2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g$, the generators are $1+2 \varepsilon_{t}$ of order $4 ; 1+6 \varepsilon_{t}$ of order $2,1+\varepsilon_{t} u_{i}$ of order $8 ; 1+\varepsilon_{t} v_{j}$ of order 4 and $1+\varepsilon_{t} w_{k}$ of order 2 . The rest of the proof is similar to the proof of Proposition 3.7.
Case(ii): For $p \neq 2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g, 1 \leq l \leq h$, the generators are $1+p \varepsilon_{t}$ of order $p^{3}, 1+\varepsilon_{t} u_{i}$ of order $p^{3}, 1+\varepsilon_{t} v_{j}$ of order $p, 1+\varepsilon_{t} w_{k}$ of order p and $1+\varepsilon_{t} y_{l}$ of order p. The rest of the proof is similar to the proof of Proposition 3.7.

Proposition 3.10. Let R be a completely primary finite ring from the class of finite rings described by the construction and of characteristic p^{4} with $p^{4} u_{i}=p v_{j}=p w_{k}=p y_{l}=0$. Then the group of units

$$
R^{*} \cong\left\{\begin{array}{r}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{16}^{e}\right)^{r} \times\left(\mathbb{Z}_{4}^{f}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}, \quad \text { if } \quad p=2 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{3}}^{r} \times\left(\mathbb{Z}_{p^{4}}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}, \quad \text { if } \quad p \neq 2
\end{array}\right.
$$

Proof. Since $R^{*} \cong \mathbb{Z}_{p^{r}-1} \times(1+Z(R))$, it suffices to determine the structure of $1+Z(R)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r}$ form a basis for $R_{0} / p R_{0}$ regarded as a vector space over its prime subfield \mathbb{F}_{p}. Then the generators with their respective orders are as indicated below:

Case(i): For $p=2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g$, the generators are $1+2 \varepsilon_{t}$ of order $4 ; 1+6 \varepsilon_{t}$ of oder $2,1+\varepsilon_{t} u_{i}$ of order $16 ; 1+\varepsilon_{t} v_{j}$ of order 4 and $1+\varepsilon_{t} w_{k}$ of order 2 . The rest of the proof is similar to the proof of Proposition 3.7.
Case(ii): For $p \neq 2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g, 1 \leq l \leq h$, the generators are $1+p \varepsilon_{t}$ of order $p^{3}, 1+\varepsilon_{t} u_{i}$ of order $p^{4}, 1+\varepsilon_{t} v_{j}$ of order $p, 1+\varepsilon_{t} w_{k}$ of order p and $1+\varepsilon_{t} y_{l}$ of order p. The rest of the proof is similar to the proof of Proposition 3.7.

Proposition 3.11. Let R be a completely primary finite ring from the class of finite rings described by the construction and of characteristic p^{5} with $p u_{i}=p v_{j}=p w_{k}=p y_{l}=0$. Then the group of units

$$
R^{*} \cong\left\{\begin{array}{rr}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{8}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{8}^{e}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}, & \text { if } p=2 \\
\mathbb{Z}_{3^{r}-1} \times \mathbb{Z}_{81}^{r} \times\left(\mathbb{Z}_{3}^{e}\right)^{r} \times\left(\mathbb{Z}_{3}^{f}\right)^{r} \times\left(\mathbb{Z}_{3}^{h}\right)^{r}, & \text { if } p=3 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{4}}^{r} \times\left(\mathbb{Z}_{p}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}, & \text { if } \quad p>3
\end{array}\right.
$$

Proof. Using the fact that $R^{*} \cong \mathbb{Z}_{p^{r}-1} \times(1+Z(R))$, it suffices to determine the structure of $1+Z(R)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r}$ form a basis for $R_{0} / p R_{0}$ regarded as a vector space over its prime subfield \mathbb{F}_{p}. We consider the three cases separately:

Case(i): $p=2$. For every $t=1, \ldots, r,\left(1+4 \varepsilon_{t}\right)^{8}=1,\left(1+14 \varepsilon_{t}\right)^{2}=1,\left(1+\varepsilon_{t} u_{i}\right)^{8}=1$, and $\left(1+\varepsilon_{t} w_{k}\right)^{2}=1$. For non-negative integers $\alpha_{t}, \lambda_{t}, \varphi_{t}$ and δ_{t} with $\alpha_{t} \leq 8, \lambda_{t} \leq 2, \varphi_{t} \leq 8$ and $\delta_{t} \leq 2$, it is clear that

$$
\prod_{t=1}^{r}\left\{\left(1+4 \varepsilon_{t}\right)^{\alpha_{t}}\right\} \cdot \prod_{t=1}^{r}\left\{\left(1+14 \varepsilon_{t}\right)^{\delta_{t}}\right\} \cdot \prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi_{t}}\right\} \cdot \prod_{k=1}^{g} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\lambda_{t}}\right\}=\{1\}
$$

This indicates that $\alpha_{t}=8, \lambda_{t}=2, \varphi_{t}=8$ and $\delta_{t}=2$ for all $t=1, \ldots, r$.

Suppose

$A_{t}=\left\{\left(1+4 \varepsilon_{t}\right)^{\alpha}: \alpha=1, \ldots, 8 ; \forall t=1, \ldots, r\right\}$,
$B_{t}=\left\{\left(1+14 \varepsilon_{t}\right)^{\delta}: \delta=1,2 ; \forall t=1, \ldots, r\right\}$,
$C_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi}: \varphi=1, \ldots, 8 ; \forall t=1, \ldots, r\right\}$, and
$D_{t k}=\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\lambda}: \lambda=1,2 ; \forall t=1, \ldots, r\right\}$,
then $A_{t}, \quad B_{t}, C_{t i}$ and $D_{t k}$ are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups $\left.\left.\left.<1+4 \varepsilon_{t}\right\rangle,<1+14 \varepsilon_{t}\right\rangle,<1+\varepsilon_{t} u_{i}\right\rangle$, and $<1+\varepsilon_{t} w_{k}>$ gives the identity group and that

$$
\left|\prod_{t=1}^{r}<1+4 \varepsilon_{t}>|\cdot| \prod_{t=1}^{r}<1+14 \varepsilon_{t}>|\cdot| \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>\right|
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{t=1}^{r}<1+4 \varepsilon_{t}>\times \prod_{t=1}^{r}<1+14 \varepsilon_{t}>\times \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}> \\
& \cong \mathbb{Z}_{8}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{8}^{e}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}
\end{aligned}
$$

Case(ii): $p=3$. For every $t=1, \ldots, r,\left(1+3 \varepsilon_{t}\right)^{81}=1,\left(1+\varepsilon_{t} v_{j}\right)^{3}=1,\left(1+\varepsilon_{t} u_{i}\right)^{9}=1$, and $\left(1+\varepsilon_{t} y_{l}\right)^{3}=1$. For non-negative integers $\alpha_{t}, \lambda_{t}, \varphi_{t}$ and δ_{t} with $\alpha_{t} \leq 81, \lambda_{t} \leq 3, \varphi_{t} \leq 9$ and $\delta_{t} \leq 3$, it is clear that

$$
\prod_{t=1}^{r}\left\{\left(1+3 \varepsilon_{t}\right)^{\alpha_{t}}\right\} \cdot \prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi_{t}}\right\} \cdot \prod_{j=1}^{f} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\delta_{t}}\right\} \cdot \prod_{l=1}^{h} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\lambda_{t}}\right\}=\{1\}
$$

This indicates that $\alpha_{t}=81, \lambda_{t}=3, \varphi_{t}=9$ and $\delta_{t}=3$ for all $t=1, \ldots, r$.
Suppose
$A_{t}=\left\{\left(1+3 \varepsilon_{t}\right)^{\alpha}: \alpha=1, \ldots, 81 ; \forall t=1, \ldots, r\right\}$,
$B_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi}: \varphi=1, \ldots, 9 ; \forall t=1, \ldots, r\right\}$,
$C_{t j}=\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\delta}: \delta=1,2,3 ; \forall t=1, \ldots, r\right\}$, and
$D_{t l}=\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\lambda}: \lambda=1,2,3 ; \forall t=1, \ldots, r\right\}$,
then $A_{t}, \quad B_{t i}, C_{t j}$ and $D_{t l}$ are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups $\left.\left.\left.<1+3 \varepsilon_{t}\right\rangle, \quad<1+\varepsilon_{t} u_{i}\right\rangle,<1+\varepsilon_{t} v_{j}\right\rangle$, and $\left.<1+\varepsilon_{t} y_{l}\right\rangle$ gives the identity group and that

$$
\left|\prod_{t=1}^{r}<1+3 \varepsilon_{t}>|\cdot| \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>|\cdot| \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}>\right|
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{t=1}^{r}<1+3 \varepsilon_{t}>\times \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>\times \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}> \\
& \cong \mathbb{Z}_{81}^{r} \times\left(\mathbb{Z}_{9}^{e}\right)^{r} \times\left(\mathbb{Z}_{3}^{f}\right)^{r} \times\left(\mathbb{Z}_{3}^{h}\right)^{r}
\end{aligned}
$$

Case(iii): $p>3$. For every $t=1, \ldots, r,\left(1+p \varepsilon_{t}\right)^{p^{4}}=1,\left(1+\varepsilon_{t} u_{i}\right)^{p}=1,\left(1+\varepsilon_{t} v_{j}\right)^{p}=1,\left(1+\varepsilon_{t} w_{k}\right)^{p}=$ 1 , and $\left(1+\varepsilon_{t} y_{l}\right)^{p}=1$. For non-negative integers $\alpha_{t}, \lambda_{t}, \varphi_{t}, \beta_{t}$, and δ_{t} with $\alpha_{t} \leq p^{4}, \lambda_{t} \leq p, \varphi_{t} \leq p$, $\beta_{t} \leq p$ and $\delta_{t} \leq p$, it is clear that

$$
\begin{aligned}
& \prod_{t=1}^{r}\left\{\left(1+p \varepsilon_{t}\right)^{\alpha_{t}}\right\} \cdot \prod_{i=1}^{e} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi_{t}}\right\} \cdot \prod_{j=1}^{f} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\delta_{t}}\right\} \cdot \prod_{k=1}^{g} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\beta_{t}}\right\} \cdot \\
& \prod_{l=1}^{h} \prod_{t=1}^{r}\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\lambda_{t}}\right\}=\{1\}
\end{aligned}
$$

This indicates that $\alpha_{t}=p^{4}, \lambda_{t}=p, \varphi_{t}=p, \delta_{t}=p$, and $\beta_{t}=p$, for all $t=1, \ldots, r$.
Suppose
$A_{t}=\left\{\left(1+p \varepsilon_{t}\right)^{\alpha}: \alpha=1, \ldots, p^{4} ; \forall t=1, \ldots, r\right\}$,
$B_{t i}=\left\{\left(1+\varepsilon_{t} u_{i}\right)^{\varphi}: \varphi=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
$C_{t j}=\left\{\left(1+\varepsilon_{t} v_{j}\right)^{\delta}: \delta=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
$D_{t k}=\left\{\left(1+\varepsilon_{t} w_{k}\right)^{\beta}: \beta=1, \ldots, p ; \forall t=1, \ldots, r\right\}$, and
$E_{t l}=\left\{\left(1+\varepsilon_{t} y_{l}\right)^{\lambda}: \lambda=1, \ldots, p ; \forall t=1, \ldots, r\right\}$,
then $A_{t}, B_{t i}, C_{t j}, D_{t k}$, and $E_{t l}$, are all cyclic subgroups of the group $1+Z(R)$ and these are of the orders inferred from their definition. Since the intersection of any pair of the cyclic subgroups $\left.\left.<1+p \varepsilon_{t}\right\rangle,<1+\varepsilon_{t} u_{i}\right\rangle,\left\langle 1+\varepsilon_{t} v_{j}\right\rangle,\left\langle 1+\varepsilon_{t} w_{k}\right\rangle$, and $\left\langle 1+\varepsilon_{t} y_{l}\right\rangle$, gives the identity group and that

$$
\begin{aligned}
& \left|\prod_{t=1}^{r}<1+p \varepsilon_{t}>|\cdot| \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>|\cdot| \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}>|\cdot| \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>\right| \\
& \mid \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}>
\end{aligned}
$$

coincides with $|1+Z(R)|$, it follows that

$$
\begin{aligned}
1+Z(R) & =\prod_{t=1}^{r}<1+p \varepsilon_{t}>\times \prod_{i=1}^{e} \prod_{t=1}^{r}<1+\varepsilon_{t} u_{i}>\times \prod_{j=1}^{f} \prod_{t=1}^{r}<1+\varepsilon_{t} v_{j}> \\
& \times \prod_{k=1}^{g} \prod_{t=1}^{r}<1+\varepsilon_{t} w_{k}>\times \prod_{l=1}^{h} \prod_{t=1}^{r}<1+\varepsilon_{t} y_{l}> \\
& \cong \mathbb{Z}_{p^{4}}^{r} \times\left(\mathbb{Z}_{p}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}
\end{aligned}
$$

Proposition 3.12. Let R be a completely primary finite ring from the class of finite rings described by the construction and of characteristic p^{5} with $p^{2} u_{i}=p v_{j}=p w_{k}=p y_{l}=0$. Then the group of units

$$
R^{*} \cong\left\{\begin{array}{rr}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{8}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{2}^{e}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r} \times\left(\mathbb{Z}_{8}^{e+f}\right)^{r}, & \text { if } p=2 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{4}}^{r} \times\left(\mathbb{Z}_{p^{2}}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}, & \text { if } \quad p \neq 2
\end{array}\right.
$$

Proof. Since $R^{*} \cong \mathbb{Z}_{p^{r}-1} \times(1+Z(R))$, it suffices to determine the structure of $1+Z(R)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r}$ form a basis for $R_{0} / p R_{0}$ regarded as a vector space over its prime subfield \mathbb{F}_{p}. Then the generators with their respective orders are as indicated below:
Case(i): For $p=2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g$, the generators are $1+4 \varepsilon_{t}$ of order $8 ; 1+14 \varepsilon_{t}$ of order $2,1+2 \varepsilon_{t} u_{i}$ of order $2 ; 1+\varepsilon_{t} w_{k}$ of order 2 and $1+\varepsilon_{t} u_{i}+\varepsilon_{t} v_{j}$ of order 8 . The rest of the proof is similar to the proof of Proposition 3.11.
Case(ii): For $p \neq 2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g, 1 \leq l \leq h$, the generators are $1+p \varepsilon_{t}$ of order $p^{4}, 1+\varepsilon_{t} u_{i}$ of order $p^{2}, 1+\varepsilon_{t} v_{j}$ of order $p, 1+\varepsilon_{t} w_{k}$ of order p and $1+\varepsilon_{t} y_{l}$ of order p. The rest of the proof is similar to the proof of Proposition 3.11.

Proposition 3.13. Let R be a completely primary finite ring from the class of finite rings described by the construction and of characteristic p^{5} with $p^{3} u_{i}=p v_{j}=p w_{k}=p y_{l}=0$. Then the group of units

$$
R^{*} \cong\left\{\begin{array}{rr}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{8}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{8}^{e}\right)^{r} \times\left(\mathbb{Z}_{4}^{f}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}, & \text { if } p=2 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{4}}^{r} \times\left(\mathbb{Z}_{p^{3}}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}, & \text { if } \quad p \neq 2
\end{array}\right.
$$

Proof. Since $R^{*} \cong \mathbb{Z}_{p^{r}-1} \times(1+Z(R))$, it suffices to determine the structure of $1+Z(R)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r}$ form a basis for $R_{0} / p R_{0}$ regarded as a vector space over its prime subfield \mathbb{F}_{p}. Then the generators with their respective orders are as indicated below:

Case(i): For $p=2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g$, the generators are $1+4 \varepsilon_{t}$ of order $8 ; 1+14 \varepsilon_{t}$ of oder $2,1+\varepsilon_{t} u_{i}$ of order $8 ; 1+\varepsilon_{t} v_{j}$ of order 4 and $1+\varepsilon_{t} w_{k}$ of order 2 . The rest of the proof is similar to the proof of Proposition 3.11.

Case(ii): For $p \neq 2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g, 1 \leq l \leq h$, the generators are $1+p \varepsilon_{t}$ of order $p^{4}, 1+\varepsilon_{t} u_{i}$ of order $p^{3}, 1+\varepsilon_{t} v_{j}$ of order $p, 1+\varepsilon_{t} w_{k}$ of order p and $1+\varepsilon_{t} y_{l}$ of order p. The rest of the proof is similar to the proof of Proposition 3.11.

Proposition 3.14. Let R be a completely primary finite ring from the class of finite rings described by the construction and of characteristic p^{5} with $p^{4} u_{i}=p v_{j}=p w_{k}=p y_{l}=0$. Then the group of units

$$
R^{*} \cong\left\{\begin{array}{r}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{8}^{r} \times \mathbb{Z}_{2}^{r} \times\left(\mathbb{Z}_{16}^{e}\right)^{r} \times\left(\mathbb{Z}_{4}^{f}\right)^{r} \times\left(\mathbb{Z}_{2}^{g}\right)^{r}, \quad \text { if } \quad p=2 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{4}}^{r} \times\left(\mathbb{Z}_{p^{4}}^{e}\right)^{r} \times\left(\mathbb{Z}_{p}^{f}\right)^{r} \times\left(\mathbb{Z}_{p}^{g}\right)^{r} \times\left(\mathbb{Z}_{p}^{h}\right)^{r}, \quad \text { if } \quad p \neq 2
\end{array}\right.
$$

Proof. Since $R^{*} \cong \mathbb{Z}_{p^{r}-1} \times(1+Z(R))$, it suffices to determine the structure of $1+Z(R)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ such that $\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{r}$ form a basis for $R_{0} / p R_{0}$ regarded as a vector space over its prime subfield \mathbb{F}_{p}. Then the generators with their respective orders are as indicated below:

Case(i): For $p=2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g$, the generators are $1+4 \varepsilon_{t}$ of order $8 ; 1+14 \varepsilon_{t}$ of order $2,1+\varepsilon_{t} u_{i}$ of order $16 ; 1+\varepsilon_{t} v_{j}$ of order 4 and $1+\varepsilon_{t} w_{k}$ of order 2 . The rest of the proof is similar to the proof of Proposition 3.11.

Case(ii): For $p \neq 2,1 \leq t \leq r, 1 \leq i \leq e, 1 \leq j \leq f, 1 \leq k \leq g, 1 \leq l \leq h$, the generators are $1+p \varepsilon_{t}$ of order $p^{4}, 1+\varepsilon_{t} u_{i}$ of order $p^{4}, 1+\varepsilon_{t} v_{j}$ of order $p, 1+\varepsilon_{t} w_{k}$ of order p, and $1+\varepsilon_{t} y_{l}$ of order p. The rest of the proof is similar to the proof of Proposition 3.11.

4 Conclusion

This study has constructed a class of five radical zero commutative completely primary finite rings and classified its unit groups for some selected classes. This has been possible through isolation of the set of invertible elements from the set of zero divisors. classification of the group of units of other classes will be considered in subsequent work. For the characterization of zero divisors graphs for such rings, the publication is yet to appear. Since the classification of finite rings is still incomplete, future researchers may study rings whose subsets of zero divisors are of higher indices of nilpotence.

Acknowledgement

The first author thanks Egerton University for providing 100% tuition fee waiver for his Ph.D studies. The second author thanks University of Kabianga for granting him the opportunity to partake in the research.

Competing Interests

Authors have declared that no competing interests exist

References

[1] Raghavendran R. Finite associative rings. Compositio Mathematica. 1969;21(2):195-229.
[2] Al-Khamees, Yousif. Finite rings in which the multiplication of any two zero-divisors is zero. Archiv der Mathematik. 1981;37(1):144-149.
[3] John Chikunji, Chiteng'a. On a class of finite rings. Communications in Algebra. 1999;27(10):5049-5081.
[4] Corbas, Basil. Rings with few zero divisors. Mathematische Annalen. 1969;181(1):1-7.
[5] Corbas, Basil. Finite rings in which the product of any two zero divisors is zero. Archiv der Mathematik XXI. 1970;21(1):466-469.
[6] Owino Maurice O, Ojiema Michael O. Unit groups of some classes of power four radical zero commutative completely primary finite rings. International Journal of Algebra. 2014;8(1):357363.
[7] Chikunji, Chiteng'a John. On unit groups of completely primary finite rings. Mathematical Journal of Okayama University. 2008;50(1):149-160.
[8] Chikunji, Chiteng'a John. Unit groups of cube radical zero commutative completely primary finite rings. International Journal of Mathematics and Mathematical Sciences. 2005;4:579-592.

[^1]
[^0]: *Corresponding author: E-mail: hezron.were@egerton.ac.ke;

[^1]: (c) 2021 Were et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Peer-review history:
 The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
 https://www.sdiarticle4.com/review-history/73198

