Asian Research Journal of Mathematics

18(11): 385-392, 2022; Article no.ARJOM. 93149
ISSN: 2456-477X

On Absolute Continuity of Non Negative Functions

Levi Otanga Olwamba ${ }^{a^{*}}$
${ }^{a}$ Department of Mathematics, Actuarial and Physical Sciences University of Kabianga, P.O. BOX 2030-20200, Kericho, Kenya.

Author's contribution
The sole author designed, analysed, interpreted and prepared the manuscript.
Article Information
DOI: 10.9734/ARJOM/2022/v18i11617
Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/93149

Received: 02 September 2022
Accepted: 31 October 2022

Original Research Article

Published: 17 November 2022

Abstract

This paper is committed to the study of absolute continuity of non negative functions with respect to vector measures. Almost everywhere properties are applied to establish boundedness, measurability and convergence of sequences of measurable functions. The measurability of sets with respect to vector duality functions with values in a Hilbert space is considered.

Keywords: Measurable sets; absolute continuity; integrable functions, non-negative functions functions.

1 Introduction

Many studies have been done on absolute continuity with respect to locally convex topological vector spaces under the conditions of finiteness and variation of vector measures. Other scholars applied measures of bounded variation with values in Normed linear spaces. In this paper, we consider absolute continuity of non negative functions. Properties of vector duality set functions with values in the product Banach spaces of absolutely summable functions ($\beta_{\epsilon_{i}}: i \in I$) in X defined on the indexed set I are applied. Throuhout this paper, $(X \times Y, Z)$ denotes a bilinear system where $X \times Y$ is the product of Banach spaces X and Y and Z is a Hilbert space, (S, ρ) and (T, ϵ) denote measurable spaces with ρ and ϵ being the sigma rings of subsets of S

[^0]and T respectively and $\mu: \rho \rightarrow \beta_{\epsilon_{i}}$ and $\nu: \epsilon \rightarrow Y$ denote vector measures where $\mu(E)=\sum_{i \in I}\left|\epsilon_{i}\right|(E) \in \beta_{\epsilon_{i}}$ and $\nu(F) \in Y$ for sets $E \in \rho$ and $F \in \epsilon, L^{\prime}(\mu)$ and $L^{\prime}(\nu)$ denotes first integral with respect to μ and ν repectively.

If ψ is a Z-valued bilinear function defined on $X \times Y$ such that $\psi: X \times Y \rightarrow Z$, then

$$
<(\mu(E) \times \nu(F))_{\psi}, z^{*}>=<\left(\sum_{i \in I}\left|\epsilon_{i}\right|(E) \times \nu(F)\right)_{\psi}, z^{*}>
$$

for each $i \in I$ where z^{*} is an element in Z^{*} the dual space of the Hilbert space Z is called vector duality function.

2 Basic Concepts

Definition 1 (Absolute continuity):

Let $\mu: \rho \rightarrow \beta_{\epsilon_{i}}$ and $\nu: \epsilon \rightarrow Y$ be vector measures. If α and β are non-negative set functions defined on ρ and ϵ respecively, then $\alpha \times \beta$ is absolutely continuous with respect to $\mu \times \nu$ if for each $\lambda>0$ there corresponds a $\delta>0$ such that $\mu \times \nu(E \times F)<\delta$ implies that $\alpha \times \beta(E \times F)<\lambda$ for every $E \times F \in \rho \times \epsilon$. We therefore write $\alpha \times \beta<\mu \times \nu$

Definition 2 (Almost uniformly convergence)

A sequence $\left(f_{n}\right)$ of $X \times Y$ valued functions is said to $(\mu \times \nu)$ - converge to f almost uniformly if given $\lambda>0$, there exists

$$
\begin{aligned}
& E \times F=(E \times F)(\epsilon) \in \rho \times \epsilon \text { such that } \mu \times \nu(E \times F)<\lambda \text { and } \\
& \left|f_{n}(s, t)-f(s, t)\right| \rightarrow 0 \text { uniformly on } S \times T \backslash E \times F
\end{aligned}
$$

Definition 3 (Measurable function)

A function $f: S \times T \rightarrow X \times Y$ is said to be $(\mu \times \nu, X \times Y)$ - measurable
if and only if
i) Range $(f) \subset X \times Y$
ii) There exists a sequence $\left(f_{n}\right)$ of $X \times Y$ valued functions converging $(\mu \times \nu, X \times Y)$ - a.e. to f

3 Results

The following propositions provide insights into properties of absolute continuity of non-negative functions.

Proposition 1

Let (S, ρ) and (T, ϵ) be measurable spaces, $(X \times Y, Z)$ a bilinear system and $\mu: \rho \rightarrow \beta_{\epsilon_{i}}$ and $\nu: \epsilon \rightarrow Y$ be vector measures.If α and β are non-negative measures defined on ρ and ϵ respectively such that
$\alpha \times \beta \ll \mu \times \nu$, then $\alpha \ll \mu$ and $\beta \ll \nu$

Proof: Let $G=E \times F \in \rho \times \epsilon, \lambda>0$ and $\delta>0$ such that $\mu(E)<\delta$ imply that $\alpha(E)<\lambda$ for any set $E \in \rho$ and $\nu(F)<\delta$ imply that $\beta(F)<\lambda$ for any set $F \in \epsilon$. Since $\alpha \times \beta \ll \mu \times \nu$, on application of properties of product measures [1], we obtain

$$
\begin{aligned}
& <(\mu \times \nu)(G), z^{*}>=<(\mu \times \nu)(E \times F), z^{*}><\delta^{2} \text { implies that } \\
& <(\alpha \times \beta)(G), z^{*}>=<(\alpha \times \beta)(E \times F), z^{*}><\lambda^{2}
\end{aligned}
$$

Consider the function $f: S \times T \rightarrow X \times Y$.For a fixed $s \in S$, then $f(s) \in L^{\prime}(\nu)$. Let $\nabla^{t}=\left(s \in S: \nu_{f(s)}\left[G^{s}\right]<\delta\right)$ be the t-section of the set ∇ [2]. It follows that,

$$
\delta^{2} \geq<\left(\mu \times \nu_{f(s)}\right)(G), z^{*}>=<\mu\left(G^{t}\right) \times \nu_{f(s)}\left(G^{s}\right), z^{*}>.
$$

Since $\nu_{f(s)}\left(G^{s}\right)>\delta$ on the complement of ∇^{t} in G^{t}, it follows that

$$
\delta^{2} \geq<\left(\mu\left(G^{t}\right) \times \nu_{f(s)}\left(G^{s}\right)\right), z^{*} \gg \delta \mu\left(\left(\nabla^{t}\right)\right)^{c}
$$

where $\left.\left(\nabla^{t}\right)\right)^{c}$ denotes the complement of ∇^{t}
Therefore, $\mu\left(\left(\nabla^{t}\right)\right)^{c}<\delta$ implies $\alpha\left(\left(\nabla^{t}\right)\right)^{c}<\lambda$ i.e. $\alpha \ll \mu$
Similarly for a fixed $t \in T$, we have

$$
\begin{aligned}
& f(t) \in L^{\prime}(\alpha) . \text { Let } \nabla^{s}=\left(t \in T: \alpha_{f(t)}\left[G^{t}\right]<\lambda\right) . \text { Therefore, } \\
& \lambda^{2} \geq<\left(\alpha_{f(t)} \times \beta\right)(G), z^{*}>=<\alpha_{f(t)}\left(G^{t}\right) \times \beta\left(G^{s}\right), z^{*}>.
\end{aligned}
$$

Hence, $\lambda^{2} \geq<\alpha_{f(t)}\left(G^{t}\right) \times \beta\left(G^{s}\right), z^{*} \gg \lambda \beta\left(\left(\nabla^{s}\right)\right)^{c}$
where $\left.\left(\nabla^{s}\right)\right)^{c}$ denotes the complement of ∇^{s}
Therefore, $\beta\left(\left(\nabla^{s}\right)\right)^{c}<\lambda$ when $\nu\left(\left(\nabla^{s}\right)\right)^{c}<\delta$ i.e. $\beta \ll \nu$
Proposition 2: Let $(X \times Y, Z)$ a bilinear system, where X and Y are Banach spaces and Z is a Hilbert space. Let $\beta: \epsilon \rightarrow Y$ be a vector measure such that such that $\alpha \times \beta$ exists for every $\alpha: \rho \rightarrow \beta_{\epsilon_{i}}$. If $\alpha \times \beta \ll \mu \times \nu$ and $(\beta(F))_{\epsilon_{i}(E)}=L U B_{n} \sum_{i \in I} \sum_{k=1}^{n}\left|\epsilon_{i}\right|(E) \beta\left(F_{k}\right)$ where $\left(F_{k}\right)$ is the partition of F, then $(\beta(F))_{\epsilon_{i}(E)} \ll \mu \times \nu$

Proof: Let α be a measure defined on a set $\left(\beta_{\epsilon_{i}}: i \in I\right)$ of absolutely summable functions $\left(\epsilon_{i}: i \in I\right)$ in X defined on an indexed set I. Since $\alpha \times \beta$ is absolutely continuous with respect to $\mu \times \nu$, given $\lambda>0$ there exists

$$
\delta=\delta(\epsilon)>0 \text { such that }<\mu \times \mu(G), z^{*}><\delta \text { implies }<\alpha \times \beta(G), z^{*}><\lambda
$$

for every $G \in \rho \times \epsilon$. Let $E \in \rho$ and $F \in \epsilon$ such that for $k>0$ we have

$$
\mu(E)<k \text { and } \mu(F)<\delta k^{-1}
$$

Let $(B(F))_{\epsilon_{i}(E)}=L U B_{n} \sum_{i \in I} \sum_{k=1}^{n}\left|\epsilon_{i}\right|(E) \beta\left(F_{k}\right) \in Z$ where $\left(F_{k}\right)$ is the partition of F for $1 \leq k \leq n$ (Otanga et al., 2015a). Define

$$
\alpha(E)=\sum_{i \in I}\left|\epsilon_{i}\right|(E) \text { for any measurable set } E[3] \text {. If } G=E \times F \in \rho \times \epsilon,
$$

then $G=\bigcup_{k=1}^{n} E \times F_{k}$. Therefore

$$
\begin{array}{r}
<(\mu \times \nu)(G), z^{*}>=\sum_{k=1}^{n}<\mu(E) \nu\left(F_{k}\right), z^{*}>\leq \sum_{k=1}^{n} k<\nu\left(F_{k}\right), z^{*}> \\
=k<\nu\left(\bigcup_{k=1}^{n} F_{k}\right), z^{*}>=k<\nu(F), z^{*}><\delta
\end{array}
$$

Since $<(\alpha \times \beta)(G), z^{*}><\lambda$, it follows that

$$
\begin{aligned}
&<(\alpha \times \beta)(G), z^{*}>=\sum_{k=1}^{n}<\alpha(E) \beta\left(F_{k}\right), z^{*}> \\
&=<\sum_{i \in I} \sum_{k=1}^{n}\left|\epsilon_{i}\right|(E) \beta\left(F_{k}\right), z^{*}>
\end{aligned}
$$

Taking the least upper bound of right hand side of the equation
[4], we obtain

$$
<(B(F))_{\epsilon_{i}(E)}, z^{*}><\lambda . \text { Hence }(B(F))_{\epsilon_{i}(E)} \ll \mu \times \nu
$$

Proposition 3: Let ($X^{\epsilon_{i}} \times Y, z$) be a bilinear system and α be a measure defined on a set $\left(\beta_{\epsilon_{i}}: i \in I\right)$ of absolutely summable functions ($\epsilon_{i}: i \in I$) in X defined on an indexed set I. Let $\mu: \rho \rightarrow \beta_{\epsilon_{i}}$ and $\nu: \epsilon \rightarrow Y$ be vector measures. If for each $i \in I, \alpha_{i}$ and β_{i} are non-negative set functions defined on ρ and ϵ respectively such that $\alpha_{i} \ll \mu$ and $\beta_{i} \ll \nu$, then $\sum_{i \in I} \alpha_{i} \times \beta_{i} \ll \mu \times \nu$.

Proof: For each $E \in \rho$ and $F \in \epsilon$, let $\mu(E)=\sum_{i \in I}\left|\epsilon_{i}\right|(E) \in X^{\epsilon_{i}}$ and $\nu(F) \in Y$ such that $\mu(E) \nu(F)=$ $\sum_{i \in I}\left|\epsilon_{i}\right|(E) \nu(F)$. For each $i \in I$, let $\alpha_{i} \times \beta_{i} \ll\left|\epsilon_{i}\right| \times \nu$ where $\alpha \times \beta_{i}$ is a non-negative set function on $\rho \times \epsilon$.

For each measurale set $E \times F$ and each $\lambda>0$ there exists $\delta>0$ such that [5]

$$
<\left|\epsilon_{i}\right| \times \nu(E \times F), z^{*}><\delta \text { implies }<\left(\alpha_{i} \times \beta_{i}\right)(E \times F), z^{*}><\lambda \text {. Let }
$$

$\sigma \subset I$ be an arbitrary finite subset such that

$$
\sum_{i \in \sigma}<\left(\alpha_{i} \times \beta_{i}\right)(E \times F), z^{*}>=\sum_{i \in I}<\left|\epsilon_{i}\right| \times \nu(E \times F), z^{*}>.
$$

If $\sum_{i \in I} \alpha_{i} \times \beta_{i}$ is a set function defined on $\rho \times \epsilon$ by the formula

$$
\sum_{i \in I}<\left(\alpha_{i} \times \beta_{i}\right)(E \times F), z^{*}>=\sup \left(\sum_{i \in \sigma}<\left(\alpha_{i} \times \beta_{i}\right)(E \times F), z^{*}>\right.
$$

then for each $\lambda>0$ there exists $\delta>0$ such that
$\sum_{i \in I}<\left|\epsilon_{i}\right| \times \nu(E \times F), z^{*}><\delta$ implies that
$\sum_{i \in I}<\left(\alpha_{i} \times \beta_{i}\right)(E \times F), z^{*}><\lambda$
Hence $\sum_{i \in I} \alpha_{i} \times \beta_{i} \ll \mu \times \nu$
Proposition 4: Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of functions such that $f_{n}: S \times T \rightarrow X \times Y$ for each n. Let $\alpha: \rho \rightarrow X$ and $\beta: \epsilon \rightarrow Y$ be a vector measures such that such $\alpha \times \beta \ll \mu \times \nu$ where ν is a non-negative set function defined on ϵ.

If $f_{n} \rightarrow f(\mu \times \nu, X \times Y)$-almost uniformly, then $f_{n} \rightarrow f$ almost everywhere. If f_{n} is $(\mu \times \nu, X \times Y)$-integrable, then f is integrable and

$$
\begin{aligned}
& <\int \mu_{\left|f_{n}(t)-f(t)\right|}\left(\left(G^{\prime}\right)^{t}\right) \delta \nu(t), z^{*}><\lambda \text { for all } n \geq \aleph, \lambda>0, t \in T \text { and } \\
& \left(G^{\prime}\right)^{t} \in \rho .
\end{aligned}
$$

Proof: Since $f_{n} \rightarrow f(\mu \times \nu, X \times Y)$-almost uniformly, let G_{m} be a measurable set with respect to $\rho \times \epsilon$ such that $(\alpha \times \beta)\left(G_{m}\right)<\lambda \backslash 2 m$ for each positive integer m and $\lambda>0$. Let $f_{n}(s, t) \rightarrow f(s, t)$ uniformly on $S \times T \backslash G_{m}$. It follows that $G=\bigcap_{m=1}^{\infty} G_{m}$ is a $\alpha \times \beta$-null set and $f_{n}(s, t) \rightarrow f(s, t)$ foreach $(s, t) \in S \times T \backslash G_{m}$. Therefore $f_{n} \rightarrow f$ a.e. Since f is a limit of an f_{n} is $(\mu \times \nu, X \times Y)$-integrable function, then it is ($\mu \times \nu, X \times Y$)-integrable.

Since $\alpha \times \beta \ll \mu \times \nu$ (by hypothesis), given $\lambda>0$ there corresponds a $\delta>0$ such that $(\mu \times \nu)\left(G^{\prime}\right)<\delta$ implies $(\alpha \times \beta)\left(G^{\prime}\right)<\lambda \backslash 2 m$ for every $G^{\prime} \in \rho \times \epsilon$ amd $m>0$. Since $f_{n} \rightarrow f(\mu \times \nu, X \times Y)$-almost uniformly, there exists $G^{\prime \prime} \subset G^{\prime}$ such that for a fixed $t \in T$, we have

$$
\alpha\left(\left(G^{\prime \prime}\right)^{t}\right)=\sum_{i \in I}\left|\epsilon_{i}\right|\left(\left(G^{\prime \prime}\right)^{t}\right)<\lambda \backslash 2 m
$$

For all $n>\aleph$ and as a consequence of integral representation of product vector measure duality [6], we have

$$
<\int\left|f_{n}(t)-f(t)\right| \delta \mu, z^{*}><\lambda \backslash 2 \sum_{i \in I}\left|\epsilon_{i}\right|\left(\left(G^{\prime}\right)^{t} \backslash\left(G^{\prime \prime}\right)^{t}\right)
$$

It follows from measurable concepts in [7] that

$$
\begin{aligned}
& <\int \mu_{\left|f_{n}(t)-f(t)\right|}\left(\left(G^{\prime}\right)^{t}\right) \delta \nu(t), z^{*}> \\
& \quad \leq \lambda\left(\sum_{i \in I}\left|\epsilon_{i}\right|\left(\left(G^{\prime}\right)^{t} \backslash\left(G^{\prime \prime}\right)^{t}\right) \backslash 2 \sum_{i \in I}\left|\epsilon_{i}\right|\left(\left(G^{\prime}\right)^{t} \backslash\left(G^{\prime \prime}\right)^{t}\right)<\lambda \backslash 2\right.
\end{aligned}
$$

Since f_{n} is $(\mu \times \nu, X \times Y)$-integrable function, it is bounded.
Suppose $\int f_{n}(t) \delta \mu \leq m \backslash 2$ for any positive integer $m>0$ and for a fixed $t \in T$ [8]. Then $f_{n} \rightarrow f$ implies that $\int\left|f_{n}(t)-f(t)\right| \delta \mu \leq m$ for all n.

Let Δ be a measurable set with respect to $\rho \times \epsilon$ such that $G^{\prime} \backslash \Delta$ is a $\alpha \times \beta$-null set. On application of integral properties of vector measure
[9] and Yaogan, 2013), we obtain

$$
\begin{aligned}
<\int \mu_{\left|f_{n}(t)-f(t)\right|}\left(\left(G^{\prime \prime}\right)^{t}\right) \delta \nu(t), z^{*}>=<\int & \mu_{\left|f_{n}(t)-f(t)\right|}\left(\left(G^{\prime \prime}\right)^{t} \cap \Delta^{t}\right) \delta \nu(t), z^{*}> \\
& +<\int \mu_{\left|f_{n}(t)-f(t)\right|}\left(\left(G^{\prime \prime}\right)^{t} \backslash \Delta^{t}\right) \delta \nu(t), z^{*}>
\end{aligned}
$$

Since $\left(G^{\prime \prime}\right)^{t} \backslash \Delta^{t}$ is a α-null set, therefore

$$
\begin{gathered}
<\int \mu_{\left|f_{n}(t)-f(t)\right|}\left(\left(G^{\prime \prime}\right)^{t}\right) \delta \nu(t), z^{*}>\leq<\int \mu_{\left|f_{n}(t)-f(t)\right|}\left(\left(G^{\prime \prime}\right)^{t} \bigcap \Delta^{t}\right) \delta \nu(t), z^{*}> \\
\left.\leq m \sum_{i \in I}\left|\epsilon_{i}\right|\left(G^{\prime \prime}\right)^{t} \bigcap \Delta^{t}\right)
\end{gathered}
$$

Since $\left.\left.\sum_{i \in I}\left|\epsilon_{i}\right|\left(G^{\prime \prime}\right)^{t} \bigcap \Delta^{t}\right) \leq \sum_{i \in I}\left|\epsilon_{i}\right|\left(G^{\prime \prime}\right)^{t}\right)$, it follows that

$$
\begin{aligned}
&<\int \mu_{\left|f_{n}(t)-f(t)\right|}\left(\left(G^{\prime \prime}\right)^{t}\right) \delta \nu(t), z^{*}>\leq m \sum_{i \in I} \mid\left.\epsilon_{i} \mid\left(G^{\prime \prime}\right)^{t}\right) \\
&<m * \lambda \backslash 2 m=\lambda \backslash 2
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
&<\int \mu_{\left|f_{n}(t)-f(t)\right|}\left(\left(G^{\prime}\right)^{t}\right) \delta \nu(t), z^{*}>\leq<\int \mu_{\left|f_{n}(t)-f(t)\right|}\left(\left(G^{\prime}\right)^{t} \backslash\left(G^{\prime \prime}\right)^{t}\right) \delta \nu(t), z^{*}> \\
&+<\int \mu_{\left|f_{n}(t)-f(t)\right|}\left(\left(G^{\prime \prime}\right)^{t} \backslash \Delta^{t}\right) \delta \nu(t), z^{*}> \\
&<\lambda \backslash 2+\lambda \backslash 2=\lambda
\end{aligned}
$$

Corollary: Let $(X \times Y, Z)$ a bilinear system, where X and Y are Banach spaces and Z is a Hilbert space. Let $(S \times T, \rho \times \epsilon)$ be a measurable space and $\left(f_{G_{n}}\right)_{n=1}^{\infty}$ be a sequence of $\left(\mu \times \nu, \beta_{\epsilon_{i}} \times Y\right)$ - a.e. bounded functions such that $f_{G_{n}}: S \times T \rightarrow X \times Y$ for each n. If $f_{G_{n}} \rightarrow f_{G}$ is $\left(\mu \times \nu, \beta_{\epsilon_{i}} \times Y\right)$ - almost uniformly where $G_{n} \uparrow G$ and $G, G_{n} \in \rho \times \epsilon$, then $L U B_{n} \sum_{i \in I}<\left(\left|\epsilon_{i}\right| \times \beta\right)\left(G_{n}\right), z^{*}>=\sum_{i \in I}<\left(\left|\epsilon_{i}\right| \times \beta\right)(G), z^{*}>$

Proof: $f: S \times T \rightarrow X \times Y$ and $f_{G}=\chi_{G}$ where $G \in \rho \times \epsilon$. Let $f_{G} \subseteq \beta_{i}$
where β_{i} is a Banach space of absolutely summable functions $\left(\epsilon_{;} i \in I\right)$.

$$
\begin{aligned}
& \nabla=\left(G_{n} \in \rho \times \epsilon: f_{G_{n}} \text { is }\left(\mu \times \nu, \beta_{\epsilon_{i}} \times Y\right)-\text { measurable }\right) . \\
& G_{n}=\bigcup_{k=1}^{n} E_{k} \times F_{k} \text { where the union is disjoint and } E_{k} \times F_{k} \in \rho \times \epsilon
\end{aligned}
$$

for each k. Then

$$
\begin{aligned}
&<(\alpha \times \beta)\left(G_{n}\right), z^{*}>=\sum_{k=1}^{n}<\alpha\left(E_{k}\right) \beta\left(F_{k}\right), z^{*}> \\
&=\sum_{i \in I} \sum_{k=1}^{n}<\left|\epsilon_{i}\right|\left(E_{k}\right) \beta\left(F_{k}\right), z^{*}>
\end{aligned}
$$

where $\left|\epsilon_{i}\right|\left(E_{k}\right) \in \beta_{\epsilon_{i}}$ for each $i \in I$ and $\beta\left(F_{k}\right) \in Y$ for $1 \leq k \leq n$
If $f_{G}=\chi_{G}$, then $f_{G_{n}}(s, t)$ is a $\left(\mu \times \nu, \beta_{\epsilon_{i}} \times Y\right)$ - valued function where
$G_{n} \in \rho \times \epsilon$ for each $(s, t) \in S \times T$. It follows that $G_{n} \in \nabla$ and $\rho \times \epsilon \subseteq \nabla$.
Therefore, $f_{G_{n}}(s, t)$ is a $\left(\mu \times \nu, \beta_{\epsilon_{i}} \times Y\right)$ - measurable.
Let $G_{n}^{\prime}=\left((x, y):\left|f_{G_{n}}(x, y)-f_{G}(x, y)\right|\right) \geq 1 \backslash m$ for some n$)$
If $G^{\prime \prime}=\bigcup_{k=1}^{\infty} G_{n}^{\prime}$, then

$$
\begin{aligned}
\left(G^{\prime \prime}\right)^{c}=\bigcap_{k=1}^{\infty}\left(G_{n}^{\prime}\right)^{c}= & \bigcap_{k=1}^{\infty}\left(\left((x, y):\left|f_{G_{n}}(x, y)-f_{G}(x, y)\right| \geq 1 \backslash m\right)^{c}\right. \\
& =\bigcap_{k=1}^{\infty}\left(\left((x, y):\left|f_{G_{n}}(x, y)-f_{G}(x, y)\right|<1 \backslash m\right)\right.
\end{aligned}
$$

where $\left(G^{\prime \prime}\right)^{c}$ is the complement of $G^{\prime \prime}$
Therefore, $\left(G_{n}^{\prime \prime}\right)^{c} \subset\left(\left((x, y):\left|f_{G_{n}}(x, y)-f_{G}(x, y)\right|<1 \backslash m\right)\right.$

If $1 \backslash m<\lambda$ for $\lambda>0$, then $\left|f_{G_{n}}(x, y)-f_{G}(x, y)\right|<\lambda$ for all $(x, y) \in\left(G^{\prime \prime}\right)^{c}$
where $G^{\prime \prime}$ is a null set. Therefore, $f_{G_{n}} \rightarrow f_{G}\left(\mu \times \nu, \beta_{\epsilon_{i}} \times Y\right)$ - almost uniformly. Since $f_{G_{n}}$ is $\left(\mu \times \nu, \beta_{\epsilon_{i}} \times Y\right)-$ a.e. bounded, then f_{G} is $\left(\mu \times \nu, \beta_{\epsilon_{i}} \times Y\right)$ bounded. It follows that f_{G} is $\left(\mu \times \nu, \beta_{\epsilon_{i}} \times Y\right)$ - measurable since it is the limit of a sequence $\left(f_{G_{n}}\right)_{n=1}^{\infty}$ of $\left(\mu \times \nu, \beta_{\epsilon_{i}} \times Y\right)$ - measurable functions. Since f_{G} is bounded and measurable it implies that f_{G} is $\left(\mu \times \nu, \beta_{\epsilon_{i}} \times Y\right)$ - integrable.

Let $f_{G_{n}} \leq f_{G_{n}+1}$ a.e. for all $n \in \aleph$ and for a fixed $t \in T$. Then $<\int\left(\alpha_{f_{G_{n}(t)}}(E)\right) \delta_{\beta(t)}, z^{*}>\leq m$ for $m>0$ and $E \in \rho$. By monotone properties of a vector measure [10], there exists an integrable function f_{G} such that $f_{G_{n}} \uparrow f_{G}$ and $L U B_{n}<\int\left(\alpha_{f_{G_{n}(t)}}(E)\right) \delta_{\beta(t)}, z^{*}>=<\int\left(\alpha_{f_{G(t)}}(E)\right) \delta_{\beta(t)}, z^{*}>$.

Since $G_{n} \uparrow G$ (hypothesis), it follows that

$$
L U B_{n} \sum_{i \in I}<\left|\epsilon_{i}\right| \times \beta\left(G_{n}\right), z^{*}>=\sum_{i \in I}<\left|\epsilon_{i}\right| \times \beta(G), z^{*}>
$$

4 Conclusion

The results obtained in this paper highlights the application of almost everywhere, measurability and boundedness properties to analyse absolute continuity of non-negative functions with values in a Hilbert space.

Acknowledgement

This research was supported by University of Kabianga.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Otanga OL. On the Finiteness and Sigma Finiteness a Cubic Measure Function. Inter. Math. Forum, Hikari Ltd. 2015;10(3):111-114
[2] Otanga OL, Oduor MO. On Pointwise Product Vector Measure Duality. Journal of Advances in Mathematics. 2021;20:8-18.
[3] Cunji Y, Shaomin W. The Lebesgue measure of the Julian Sets of Permutable Transcendental Entire Functions. Journal of Advances in Pure Mathematics. 2022; 12: 526-536.
[4] Otanga OL, Oduor MO, Aywa SO. On generation of measurable covers for measurable sets using multiple integral of functions. Journal of Mathematics and Stastical Science. 2015b;2015:32-41.
[5] Yulian F. The Quasi-sure limit of convex combinations of Nonnegative Measurable Functions. Journal of Function Spaces. 2019; 1-4
[6] Campo Del R, Fernandez A, Ferrrando I, Mayoral F, Naranjo F. Compactness of multiplication operators on spaces of integrable functions with respect to a vector measure, in vector measure, integration and related topics. Birkhauser Verlag, Basel. 2010;201:109-113.
[7] Bardi BG. Vector-valued Measurable Functions. Journal of Topology and its applications. 2019;252:1-8.
[8] Mehmet U, Sevda S. Distance of convergence in Measure of measurable Functions Positivity. Ankara University, Turkey. 2019; 23: 507-521.
[9] Rodriguez J. On integration of vector functions with respect to vector measures. Czechoslovak Math. J. 2006;56(3):805-825.
[10] Otanga OL, Oduor MO, Aywa SO. Partition of Measurable Sets. Journal of Advances in Mathematics. 2015a;10(8):3759-3763.

[^1][^2]
[^0]: *Corresponding author: E-mail: leviotanga@gmail.com;

[^1]: (C) 2022 Olwamba; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribu-tion, and reproduction in any medium, provided the original work is properly cited.

[^2]: Peer-review history:
 The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
 https://www.sdiarticle5.com/review-history/93149

