
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/265834340

On conjugacy and order structure of certain classes of finite

groups

Article  in  International Journal of Pure and Applied Mathematics · March 2014

DOI: 10.12732/ijpam.v91i4.2

CITATIONS

0
READS

65

2 authors, including:

Some of the authors of this publication are also working on these related projects:

On the Structure theory of Finite Rings View project

Maurice Owino Oduor

University of Kabianga

33 PUBLICATIONS   50 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Maurice Owino Oduor on 15 February 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/265834340_On_conjugacy_and_order_structure_of_certain_classes_of_finite_groups?enrichId=rgreq-0c1d6800f94de8d1605c41d8df1223a8-XXX&enrichSource=Y292ZXJQYWdlOzI2NTgzNDM0MDtBUzozMjkzNjcxNTk4ODU4MjdAMTQ1NTUzODY1ODk3MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/265834340_On_conjugacy_and_order_structure_of_certain_classes_of_finite_groups?enrichId=rgreq-0c1d6800f94de8d1605c41d8df1223a8-XXX&enrichSource=Y292ZXJQYWdlOzI2NTgzNDM0MDtBUzozMjkzNjcxNTk4ODU4MjdAMTQ1NTUzODY1ODk3MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/On-the-Structure-theory-of-Finite-Rings?enrichId=rgreq-0c1d6800f94de8d1605c41d8df1223a8-XXX&enrichSource=Y292ZXJQYWdlOzI2NTgzNDM0MDtBUzozMjkzNjcxNTk4ODU4MjdAMTQ1NTUzODY1ODk3MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0c1d6800f94de8d1605c41d8df1223a8-XXX&enrichSource=Y292ZXJQYWdlOzI2NTgzNDM0MDtBUzozMjkzNjcxNTk4ODU4MjdAMTQ1NTUzODY1ODk3MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maurice-Oduor?enrichId=rgreq-0c1d6800f94de8d1605c41d8df1223a8-XXX&enrichSource=Y292ZXJQYWdlOzI2NTgzNDM0MDtBUzozMjkzNjcxNTk4ODU4MjdAMTQ1NTUzODY1ODk3MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maurice-Oduor?enrichId=rgreq-0c1d6800f94de8d1605c41d8df1223a8-XXX&enrichSource=Y292ZXJQYWdlOzI2NTgzNDM0MDtBUzozMjkzNjcxNTk4ODU4MjdAMTQ1NTUzODY1ODk3MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Kabianga?enrichId=rgreq-0c1d6800f94de8d1605c41d8df1223a8-XXX&enrichSource=Y292ZXJQYWdlOzI2NTgzNDM0MDtBUzozMjkzNjcxNTk4ODU4MjdAMTQ1NTUzODY1ODk3MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maurice-Oduor?enrichId=rgreq-0c1d6800f94de8d1605c41d8df1223a8-XXX&enrichSource=Y292ZXJQYWdlOzI2NTgzNDM0MDtBUzozMjkzNjcxNTk4ODU4MjdAMTQ1NTUzODY1ODk3MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maurice-Oduor?enrichId=rgreq-0c1d6800f94de8d1605c41d8df1223a8-XXX&enrichSource=Y292ZXJQYWdlOzI2NTgzNDM0MDtBUzozMjkzNjcxNTk4ODU4MjdAMTQ1NTUzODY1ODk3MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


International Journal of Pure and Applied Mathematics

Volume 91 No. 4 2014, 435-458
ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)
url: http://www.ijpam.eu
doi: http://dx.doi.org/10.12732/ijpam.v91i4.2

PA
ijpam.eu

ON CONJUGACY AND ORDER STRUCTURE OF

CERTAIN CLASSES OF FINITE GROUPS

Osango E.O. Hesbon1 §, Owino Maurice Oduor2

1Department of Mathematics
Egerton University

P.O. Box 536, Egerton, KENYA
2Department of Mathematics and Computer Science

University of Kabianga
P.O. Box 2030-20200, Kericho, KENYA

Abstract: The classification of finite groups still remains an open problem.
The concept of conjugacy provides an insight on the structure of finite groups.
It is an equivalence relation which provides a neat algebraic description of the
size of each conjugacy class in a finite group. We set to examine the conjugacy
and order structures of general linear groups, GL(n, q) and special linear groups,
SL(n, q) with some restrictions on n. We have also established the special cases
of conjugacy classes of GL(n, q) splitting in SL(n, q) and given the conditions
of splitting or not splitting.

AMS Subject Classification: 20E45, 20H30
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1. Introduction

It is well known that simple groups have been classified. But the classification
of all finite groups still remain an open problem. The structures of conjugacy
and order of elements in finite groups have proved to be powerful tools towards
the classification of these groups. In this case, we have classified the GL(n, q)
and its subgroup, SL(n, q) when n = 2, 3 and q ≤ 5. Earlier work began with
Lipchurtz, who used group field concepts to say that the order of F be q and
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is paramount to general linear groups. These are multiplicative groups of all
n× n invertible matrices over F . Moori and Basheer [8] studied the properties
and structure of the general linear group GL(n, F ) and some of its subgroups
if F is finite with q elements.

2. The Conjugacy and Order Structure of GL(2, q)

Let F be a finite field with q elements, where q = pr, for some prime p. Using
a well known result that matrices with the same Jordan form are similar and
hence conjugate. The normalizer of A in G, NG(A), includes all matrices of the
form

α0I + α1A+ α2A
2 + · · ·+ αn−1A

n−1.

Theorem 2.1.1. If the eigenvalues of the minimal polynomial m(x) of a
matrix A ∈ G are distinct, then NG(A) contains only the matrices of the form

α0I + α1A+ α2A
2 + · · ·+ αn−1A

n−1.

Proof. Let A be a matrix whose eigenvalues are λ1, λ2, . . . , λn such that
λi 6= λj , i, j = 1, 2, . . . , n. Consider all the matrices that commute with A, i.e.

NG(A) = {B : BA = AB}.

We show that B is of the form

α0I + α1A+ α2A
2 + · · ·+ αn−1A

n−1.

Let Av = βv where β = λi, i = 1, 2, . . . , n. Then

B(Av) = B(βv) ⇒ A(Bv) = β(Bv).

This implies that Bv is an eigenvector of A corresponding to the eigenvalue β.
Since eigenvectors of distinct eigenvalues are linearly independent, Bv must

be a multiple of v, hence Bvi = µivi where vi is an eigenvector corresponding
to the eigenvalue λi. B is determined by the scalars (µ1, µ2, . . . , µn), where µi

are not necessarily distinct.
Now, let B1, B2, . . . , Bm be a basis for NG(A). Then each Bi is determined

by scalars µ1, µ2, . . . , µn, where the µi are not necessarily distinct.
Since B1, B2, . . . , Bm are linearly independent if and only if the set of vectors

µi1, µi2, . . . , µin , i = 1, 2, . . . ,m in Fn are linearly independent and Fn has
dimension n, then m ≤ n. Now since matrices of the form

α0I + α1A+ α2A
2 + · · · + αn−1A

n−1, αj ∈ F, j = 1, 2, . . . , n− 1
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are also in NG(A) and {I,A,A2, . . . , An−1} are linearly independent and A
cannot satisfy a polynomial of degree less than n in F , then the set {I,A,A2, . . . ,
An−1} span a vector space of dimension n. Therefore B is of the form

α0I + α1A+ α2A
2 + · · ·+ αn−1A

n−1.

We use the above result together with the minimal polynomial and the
corresponding Jordan forms of elements of GL(2, q) to determine the conjugacy
classes of the elements of GL(2, q).

The following are all the possible forms of characteristic polynomials ob-
tainable from the elements of G:

1. p(x) = (x− a)2

2. p(x) = (x− a)(x− b), a 6= b

3. p(x) = x2 + ax+ b, b 6= 0, which is irreducible over F .

By considering the possible minimal polynomials in each case and letting
a class representative of each A ∈ G which is similar to the Jordan form, we
have:-

Case 1: when p(x) = (x − a)2 and m(x) = x − a., then A is similar to
the Jordan form

J =

(

a 0
0 a

)

, a 6= 0.

Then J is a scalar matrix and so commutes with each element in G, hence
NG(A) = G. The number of conjugates of A is |G : NG(A)| = 1. Thus each
scalar matrix has only one conjugate.

The number of such matrices J is q − 1, hence there are q − 1 conjugacy
classes each with one element.

When p(x) = m(x) = (x− a)2, then A is similar to the Jordan form

J =

(

a 1
0 a

)

We now determine the matrices which commute with J . Let

B =

(

r s
t u

)

∈ NG(A) then

BJ = JB ⇔

(

r s
t u

)(

a 1
0 a

)

=

(

a 1
0 a

)(

r s
t u

)



438 O.E.O. Hesbon, O.M. Oduor

⇔

(

ra r + sa
ta t+ ua

)

=

(

ar + t as+ u
at au

)

⇒ ra = ar + t ⇒ t = 0

and r + sa = as+ u ⇒ r = u.

Hence matrix B must be of the form B =

(

r s
0 r

)

, r 6= 0. Since s is arbitrary,

we have the number of such matrices to be q(q − 1). Hence the number of
conjugates of A is

|GL(2, q)|

q(q − 1)
=

(q2 − 1)q(q − 1)

q(q − 1)
= q2 − 1.

The number of such matrices J is q−1. Hence the number of conjugacy classes
is q − 1 and the number of elements in this case is (q − 1)(q2 − 1).

Case 2: when p(x) = (x − a)(x − b), a 6= b. Clearly p(x) = m(x) =
(x− a)(x− b) and A is similar to the Jordan form

J =

(

a 0
0 b

)

Next we determine the matrices that commute with J .

Let B =

(

r s
t u

)

∈ NG(A), then BJ = JB

⇔

(

r s
t u

)(

a o
0 b

)

=

(

a 0
0 b

)(

r s
t u

)

⇔

(

ra sb
ta ub

)

=

(

ar as
bt bu

)

⇒ ra = ar ⇒ r = r since a 6= 0

sb = as ⇒ s = 0 since a 6= b

ta = bt ⇒ t = 0 since a 6= b

ub = bu ⇒ u = u since b 6= 0

Hence B must be of the form B =

(

r 0
0 u

)

, r, u 6= 0. The number of such

matrices is (q − 1)(q − 1). Hence the number of conjugates of A is

|GL(2, q)|

(q − 1)2
=

(q2 − 1)(q2 − q)

(q − 1)2
= q(q + 1).
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Thus each matrix with the Jordan form J will have q2 + q conjugates. The
number of such matrices J is

q−1C2 =
1

2
(q − 1)(q − 2)

Hence the number of conjugacy classes in this case is 1
2(q − 1)(q − 2) and the

total number of elements is 1
2(q

2 + q)(q − 1)(q − 2).
Case 3: when p(x) = x2 + ax + b, which is irreducible over F . Let

A ∈ G with p(x) = x2 + ax + b. Then p(x) has two distinct roots over the
quadratic extension field E of F . Hence the matrices that commute with A are
of the form a0I + a1A. The set

{a0I + a1A : a0, a1 ∈ F}

form a ring R isomorphic to E = F [x]/ 〈p(x)〉 (see [3], pg 384) and that any
two finite fields having the same number of elements are isomorphic.

Clearly the elements of the set {a0I + a1A : a0, a1 ∈ F} belong to G
except 0I + 0A. Hence the number of elements that commute with A i.e.
|NG(A)| = q2 − 1, since |E∗| = q2 − 1. Now the number of conjugates of A is

|GL(2, q)|

(q2 − 1)
=

(q2 − 1)(q2 − q)

(q2 − 1)
= q(q − 1).

Thus every 2 × 2 matrix with an irreducible characteristic polynomial has
q(q − 1) conjugates. We now determine the number of such matrices.

Let p(x) = x2+ax+b, b 6= 0 be the characteristic polynomial of an element
in GL(2, q). The number of such polynomials is clearly q(q − 1). To get the
irreducible ones we subtract all reducible ones from q(q − 1). Thus

q(q − 1)− (q − 1)−
(q − 1)(q − 2)

2
=

q(q − 1)

2

Hence the total number of irreducible characteristic polynomials is 1
2q(q−1).

So the number of conjugacy classes is 1
2q(q − 1) and the total number of

elements in this case is 1
2q(q − 1)q(q − 1) = 1

2q
2(q − 1)2.

Observe that the total number of elements in the three cases is

(q − 1) + (q − 1)(q2 − 1) +
1

2
(q2 + q)(q − 1)(q − 2)

+
1

2
q2(q − 1)2 = q4 − q3 − q2 + q

= (q2 − 1)(q2 − q)
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= |GL(2, q)|

Also the total number of conjugacy classes for G is

2(q − 1) +
1

2
(q − 1)(q − 2) +

1

2
q(q − 1) = q2 − 1.

In summary we have got the following results:

The polynomial Length of the conjugacy
of A ∈ GL(2, q) class containing A

(a) p(x) = x2 + ax+ b (irreducible) q2 − q = q(q − 1)

(b) p(x) = (x− a)(x− b), a 6= b q2 + q = q(q + 1)

(c) p(x) = m(x) = (x− a)2 q2 − 1

(d) p(x) = (x− a)2, m(x) = x− a 1

3. The Conjugacy Structure of SL(2, q)

Here we consider the subgroup SL(2, q) of GL(2, q) with elements (represen-
tatives) which have determinant one. We realize that some of these conjugacy
classes in G = GL(2, q) split into two in H = SL(2, q), for some q. We show
when this happens and the conditions of splitting.

3.1. Splitting of Conjugacy Classes of GL(2, q) in SL(2, q)

Let H = SL(2, q) and G = GL(2, q). If A ∈ H is a representative of a conjugacy
class in G, then the splitting of the conjugacy class of A in H will occur only if
the index of the normalizer of A in G (|G : NG(A)|) is not equal to the index
of the normalizer of A in H (|H : NH(A)|).

So in order to be able to show where splitting or non-splitting occurs, we
shall compare |G : NG(A)| with |H : NH(A)|.

Since the normalizer of a class representative and hence its conjugacy class
length in H can be easily determined in a straight forward manner from Section
3, we tabulate the results without showing any computations.

Example 3.1.1. Let H = SL(2, 2) and G = GL(2, 2),we have |H| =
|G| = q(q2 − 1) = 6. It is clear that H is isomorphic to G (H ∼= G), hence the
conjugacy structure of H is the same as that of G. Clearly in this case there is
no splitting of the conjugacy classes.
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Example 3.1.2. Let H = SL(2, 3) and G = GL(2, 3), then we have
|H| = 24. Let A ∈ H be a representative of a conjugacy class in G. We shall
get its characteristic and minimal polynomials, p(x) and m(x) respectively,
normalizer of A in H, NH(A) and the index of the normalizer of A in G and of
A in H. We then compare |G : NG(A)| with |H : NH(A)| in table 1 below.

Class rep-
resentative
(A)

(

1 0
0 1

) (

2 0
0 2

) (

1 1
0 1

) (

2 1
0 2

) (

0 2
1 0

)

p(x) (x− 1)2 (x− 2)2 (x− 1)2 (x− 2)2 x2 − 2

m(x) x− 1 x− 2 (x− 1)2 (x− 2)2 x2 − 2

NH(A) 24 24 6 6 4

|H :
NH(A)|

1 1 4 4 6

|G : NG(A)| 1 1 8 8 6

Table 1: Comparison of |G : NG(A)| with |H : NH(A)| when G =
GL(2, 3) and H = SL(2, 3)

Comparing the 5th and 6th rows, we observe that a conjugacy class in
GL(2, 3) splits into two in SL(2, 3) only when;

p(x) = m(x) = (x− a)2.

Similarly, when H = SL(2, 4) and G = GL(2, 4) we have |H| = 60. We
then find that the conjugacy class lengths in G is the same as that in H. Hence
no splitting of the conjugacy classes of GL(2, 4) in SL(2, 4) in this case.

Finally let H = SL(2, 5) and G = GL(2, 5) then we have |H| = 120. Let
A ∈ H be a representative of a conjugacy class in G. We compare |G : NG(A)|
with |H : NH(A)| and show the results in Table 2 below:

Comparing the 5th and 6th columns, we observe once again that splitting
has occurred only in the cases when p(x) = m(x) = (x− a)2.

3.2. Conditions for Splitting of Conjugacy Classes
of GL(2, q) in SL(2, q)

In this section we state a theorem which generalizes the conditions for splitting
or non-splitting of conjugacy classes of G = GL(2, q) in H = SL(2, q). But
before this we have,
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Class
representative
(A)

p(x) m(x) NH (A) |G : NG(A)| |H : NH(A)|

(

1 0
0 1

)

(x− 1)2 x− 1 120 1 1
(

4 0
0 4

)

(x− 4)2 x− 4 120 1 1
(

1 1
0 1

)

(x− 1)2 (x− 1)2 10 24 12
(

4 1
0 4

)

(x− 4)2 (x− 4)2 10 24 12
(

0 4
1 0

)

(x− 2)(x+ 2) (x− 2)(x+ 2) 4 30 30
(

0 4
1 1

)

x2 − x− 4 x2 − x− 4 6 20 20
(

0 4
1 4

)

x2 − 4x− 4 x2 − 4x− 4 6 20 20

Table 2: Comparison of |G : NG(A)| with |H : NH(A)| when G =
GL(2, 5) and H = SL(2, 5)

Theorem 3.2.1. Let q = pr (p is prime) and A ∈ H with an irreducible
minimal polynomial over F . Then

|NH(A)| = |NG(A) ∩H| =
qn − 1

q − 1

Proof. (See [5], Theorem 7.3).

Theorem 3.2.2. Let A ∈ H with p(x) and m(x) as its characteristic and
minimal polynomials respectively. Then

(a) If p(x) = (x − a)2 and m(x) = x − a, then the conjugacy class of A in
both G and H are the same.

(b) If p(x) = m(x) = (x−a)2, then the conjugacy class of A in G remains the
same in H when q ≡ 0 (mod 2) but splits into two when q ≡ 1 (mod 2).

(c) If p(x) = (x − a)(x − b), a 6= b, then the conjugacy class of A in both G
and H are the same.

(d) If p(x) = x2 + ax + b, b 6= 0, and p(x) is irreducible over F , then the
conjugacy class of A in both G and H are the same.

Proof. (a) Matrix A is contained in a singleton conjugacy class in G (see
Section 2, case 1). Clearly A is also in its own conjugacy class in H.
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(b) The number of conjugates of A in G is

q2 − 1 (from Section 2 case 1). (1)

We denote from the same section that the elements of NH(A) are of the

form

(

x w
0 x

)

, x2 = 1.

Clearly the number of solutions of x2 = 1 in F ∗ is (2, q − 1), the G.C.D
of 2 and q − 1.

(2, q − 1) =

{

1 if q ≡ 0 (mod 2)

2 if q ≡ 1 (mod 2)

and we have

|NH(A)| =

{

q if q ≡ 0 (mod 2)

2q if q ≡ 1 (mod 2)

Thus the number of conjugates of A in H is

|H : NH(A)| =

{

q2 − 1 if q ≡ 0 (mod 2)
q2−1
2 if q ≡ 1 (mod 2)

(2)

Now comparing (1) and (2) above we find that the conjugacy class of A
in G remains the same in H when q ≡ 0 (mod 2) but splits into two when
q ≡ 1 (mod 2).

(c) The number of conjugates of A in G is

q(q + 1), (see case 2 of Section 2) (3)

We deduce from the same section that the elements of NH(A) are of the
form;

(

x 0
0 y

)

, xy = 1 ⇒ x = y−1.

If q ≡ 0 (mod 2), then x 6= y, except when x = y = 1. When x 6= y,
there is a contribution of two elements to the set NH(A), for fixed x and
y. These are;

(

x 0
0 y

)

and

(

y 0
0 x

)
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When x = y = 1, there is a contribution of only one element, which is ,
(

1 0
0 1

)

. So |NH(A)| in this case is 2(q−2)
2 + 1 = q − 1.

Hence,

the number of conjugates of A in this case is q(q + 1) (4)

If q ≡ 1 (mod 2), then x 6= y except when x = y = 1 and x = y = −1. As
before when x 6= y there is a contribution of two elements to NH(A) for
fixed x and y. When x = y there is also a contribution of two elements

to NH(A), these are

(

1 0
0 1

)

and

(

−1 0
0 −1

)

so |NH(A)| in this case

2(q−3)
2 + 2 = q − 1

Hence,

the number of conjugates of A in this case is q(q + 1) (5)

Now comparing (3) with (4) and (5), we find that the conjugacy class of
A remains the same in H. Thus there is no splitting.

(d) The number of conjugates of A in G is

q(q − 1) (see Section 2, case 3) (6)

Now from Theorem 3.2.1, |NH(A)| = q + 1.

Therefore,

the number of conjugates of A in H is q(q − 1) (7)

Comparing (6) and (7) we find that the conjugacy class of A in G remains
the same in H. Hence there is no splitting.

Theorem 3.2.3. A matrix

(

b c
d e

)

∈ H with p(x) = m(x) = (x−a)2 will

be conjugate to a matrix

(

a λ
0 a

)

if c and −d belong to the same square class

with λ.
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Proof. Let B =

(

r s
t u

)

∈ H so that det B = 1, then we have

B−1

(

a λ
0 a

)

B =

(

u −s
−t r

)(

a λ
0 a

)(

r s
t u

)

=

(

ua λu− as
−at ar − λt

)(

r s
t u

)

=

(

aur + t(λu− as) aus+ u(λu− as)
−atr + t(ar − λt) −ast+ u(ar − λt)

)

=

(

a(ur − ts) + λtu aus− aus+ λu2

−atr + atr − λt2 a(ur − st)− λut

)

(8)

Since ru− st = 1, (8) becomes

(

a+ λtu λu2

−λt2 a− λut

)

Now if A =

(

b c
d e

)

is conjugate to

(

a λ
0 a

)

then

(

b c
d e

)

=

(

a+ λtu λu2

−λt2 a− λut

)

Clearly b and e are arbitrary whereas −d = λt2 and c = λu2, since t2, u2 ∈
F ∗2 ⇒ c and −d must be in the same square class with λ.

4. The Conjugacy and Order Structure of GL(3, q)

4.1. Conjugacy Classes of GL(3, q)

Let G = GL(3, q). Then we have |G| = (q3 − 1)(q3 − q)(q3 − q2). The following
are all the possible forms of characteristic polynomials of elements of G:

1. p(x) = (x− a)3

2. p(x) = (x− a)(x− b)2, a 6= b.

3. p(x) = (x− a)(x− b)(x− c), a 6= b 6= c.
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4. p(x) = (x− a)(x2 + bx+ c), where x2 + bx+ c is an irreducible quadratic
polynomial.

5. p(x) = x3 + ax2 + bx+ c, is an irreducible cubic polynomial.

Now we will determine the number of conjugacy classes and the class lengths
by considering each of the above polynomials one at a time in terms of cases.

Case 1: p(x) = (x− a)3

In this case there are 3 possible minimal polynomials, namely:

(a) m(x) = x− a

(b) m(x) = (x− a)2

(c) p(x) = m(x) = (x− a)3

Case 1 (a) m(x) = x− a

Let A ∈ G with m(x) = x− a. Then the Jordan form of A is

J =





a 0 0
0 a 0
0 0 a





This is a scalar matrix and hence a central element of G. Hence NG(A) = G.
Therefore the number of conjugates of A in G is |G : G| = 1. Thus, all the
scalar matrices belong to a singleton conjugacy class and the number of such
matrices is q − 1.

So in this case we have q − 1 conjugacy classes each with a single element.
Hence the total number of elements in this case is q − 1.

Case 1 (b) m(x) = (x− a)2

Let A ∈ G with m(x) = (x− a)2, then the Jordan form of A is

J =





a 1 0
0 a 0
0 0 a



 .

We now find the matrices that commute with J . But first we have

J =





a 1 0
0 a 0
0 0 a



 =





a 0 0
0 a 0
0 0 a



+





0 1 0
0 0 0
0 0 0




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Let T =





0 1 0
0 0 0
0 0 0



. Clearly any matrix that commutes with T commutes

with J . Now let B =





r s t
u v w
x y z



 ∈ NG(J), then by definition, BT = TB to

give B =





r s t
0 r 0
0 y z



 , r, z 6= 0

Since t, s and y are arbitrary, the number of such matrices is q3(q − 1)2.
Hence the number of conjugates of A is

|G|

q3(q − 1)2
= (q3 − 1)(q + 1)

The number of matrices of the same form as J is q − 1. Thus we have q − 1
conjugacy classes each with (q3 − 1)(q + 1) elements, and the total number of
elements in this case is (q − 1)(q3 − 1)(q + 1).

Case 1 (c) p(x) = m(x) = (x− a)3.
Let A ∈ G, with m(x) = (x− a)3, then the Jordan form of A is

J =





a 1 0
0 a 1
0 0 a





We have J =





a 0 0
0 a 0
0 0 a



 +





0 1 0
0 0 1
0 0 0



 . We then find the matrices that

commute with J .

Let B =





r s t
u v w
x y z



 ∈ NG(J). Then we find that B =





r s t
0 r s
0 0 r



 , r 6= 0.

Since s and t are arbitrary, the number of such matrices is q2(q− 1). Hence
|NG(A)| = q2(q − 1) Therefore the number of conjugates of A is

|G|

|NG(A)|
=

|G|

q2(q − 1)
= q(q2 − 1)(q3 − 1).

The number of matrices of the same form as J is q − 1. Hence we have q − 1
conjugacy classes each with q(q2 − 1)(q3 − 1) elements, and the total number
of elements in this case is q(q − 1)(q2 − 1)(q3 − 1).

Case 2: p(x) = (x− a)(x− b)2

There are two possible minimal polynomials here:
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(a) m(x) = (x− a)(x− b)

(b) m(x) = (x− a)(x− b)2

We consider each subcase.

(a) when m(x) = (x− a)(x− b).

Let A ∈ G with m(x) = (x− a)(x− b), then the Jordan form of A ∈ G is

J =





a 0 0
0 b 0
0 0 b





which commute with B =





r 0 0
0 v w
0 y z



, where r 6= 0 and

(

v w
y z

)

∈

GL(2, q).

Hence the number of matrices which commute with J is (q − 1)(q2 −
1)(q2 − q) and the number of conjugates of A is

|G|

(q − 1)(q2 − 1)(q2 − q)
= q2(q2 + q + 1).

The number of matrices with m(x) = (x − a)(x − b) is (q − 1)(q − 2),
since a 6= b. Hence there are (q − 1)(q − 2) conjugacy classes each with
q2(q2 + q + 1) elements and the total number of elements in this case is

q2(q − 1)(q − 2)(q2 + q + 1).

(b) When m(x) = (x− a)(x− b)2. Let A ∈ G. Then the Jordan form of A is

J =





a 0 0
0 b 1
0 0 b





and the matrix B =





r 0 0
0 v w
0 0 v



 ∈ NG(J), r, v 6= 0, commute with J .

Since w is arbitrary, the number of matrices which commute with J is
q(q − 1)2.
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Hence the number of conjugates of A is

|G|

q(q − 1)2
= q2(q3 − 1)(q + 1).

The number of matrices with m(x) = (x − a)(x − b)2 is (q − 1)(q − 2).
Thus the number of conjugacy classes is (q− 1)(q− 2), each with q2(q3 −
1)(q + 1) elements. Hence the total number of elements in this case is
q2(q − 2)(q2 − 1)(q3 − 1).

Case 3: p(x) = (x− a)(x− b)(x− c), a 6= b 6= c.
Here p(x) = m(x) and A ∈ G. Then the Jordan form of A is

J =





a 0 0
0 b 0
0 0 c





and the matrices which commute with J are of the form B =





r 0 0
0 v 0
0 0 z



,

r, v, z 6= 0, B ∈ NG(J).
Hence the number of matrices which commute with J is (q−1)3. Therefore

the number of conjugates of A is

|G|

(q − 1)3
= q3(q2 + q + 1)(q + 1).

The number of matrices with p(x) = (x− a)(x− b)(x− c) is

(

q − 1

3

)

=
1

6
(q − 1)(q − 2)(q − 3).

Hence there are 1
6(q − 1)(q − 2)(q − 3) conjugacy classes each with q3(q2 + q +

1)(q + 1) elements, and the total number of elements in this case is 1
6q

3(q2 +
q + 1)(q2 − 1)(q − 2)(q − 3)

Case 4: p(x) = (x−a)(x2+ bx+ c), where x2+ bx+ c is an irreducible
polynomial.

Clearly p(x) = m(x) = (x − a)(x2 + bx+ c). Let A ∈ G with p(x) = (x −
a)(x2+ bx+ c), then A has distinct eigenvalues. So, A commutes with elements
of the form α0I +α1A+α2A

2, where α0, α1, α2 ∈ F (see Theorem 2.1.1). The
elements

{α0I + α1A+ α2A
2 : α0, α1, α2 ∈ F}
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form a ring R which is isomorphic to

F [x]

(x− a)(x2 + bx+ c)
.

By Primary Decomposition Theorem (see [6], page 225) we have

F [x]

(x− a)(x2 + bx+ c)
≈

F [x]

x− a
⊕

F [x]

x2 + bx+ c
= F ⊕ E

where E is the quadratic extension field of F .

The number of invertible elements in R is seen to be (q− 1)(q2− 1). So the
number of conjugates of A is

|G|

(q − 1)(q2 − 1)
= q3(q3 − 1).

The number of matrices with p(x) = (x − a)(x2 + bx + c) is 1
2(q − 1)(q2 − q),

for a 6= 0, and the number of irreducible quadratic polynomials is 1
2q(q − 1)2.

Hence there are 1
2q(q−1)2 conjugacy classes, each with q3(q3−1) elements and

the total number of elements in this case is q4(q − 1)2(q3 − 1).

Case 5: p(x) = x3 + ax2 + bx+ c, irreducible over F .

Let A ∈ G with p(x) = x3 + ax2 + bx+ c. Then A has distinct eigenvalues
in the cubic extension field E of F . Hence A commutes with elements of the
form α0I + α1A+ α2A

2, where α0, α1, α2 ∈ F (see Theorem 2.1.1).

The elements {α0I + α1A+ α2A
2 : α0, α1, α2 ∈ F} form a ring R which is

isomorphic to F [x]/ 〈p(x)〉 = E.

All these elements of R are invertible except 0I + 0A + 0A2. Hence the
number of elements that commute with A is |E′| = q3 − 1. Hence the number
of conjugates of A is

|G|

q3 − 1
= q3(q2 − 1)(q − 1)

We now find the number of conjugacy classes in this case. This is obtained
by subtracting the number of all characteristic polynomials of the elements of
G with at least one root in F ∗ from the total number of possible characteristic
polynomials of the elements of G. In general a characteristic polynomial of an
element of G is of the form x3 + ax2 + bx+ c, where c 6= 0, so the total number
of such polynomials is q2(q − 1), and the number of irreducible ones is

q2(q − 1)−

(

1

2
q(q − 1)2 +

1

6
(q − 1)(q − 2)(q − 3) + (q − 1)(q − 2) + (q − 1)

)
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= q2(q − 1)−
1

2
q(q2 − 2q + 1)−

1

6
(q3 − 6q2 + 11q − 6)− (q2 − 3q + 2)− q + 1

=
1

6
(6q3 − 6q2 − 3q3 + 6q2 − 3q − q3 + 6q2 − 11q + 6− 6q2

+ 18q − 12− 6q + 6)

=
1

6
(2q3 − 2q) =

1

3
q(q2 − 1)

Hence there are 1
3q(q

2−1) conjugacy classes, each with q3(q2−1)(q−1) elements.
The total number of elements in this case is 1

3q
4(q − 1)(q2 − 1)2.

We observe that:

(a) The total number of elements in the five cases is

(

(q − 1) + (q − 1)(q2 − 1)(q + 1)(q − 1)(q3 − 1)(q3 − q)
)

+
(

q2(q − 1)(q − 2)(q2 + q + 1) + q2(q − 2)(q2 − 1)(q3 − 1)
)

+

(

1

6
q3(q − 2)(q − 3)(q2 − 1(q2 + q + 1)

)

+

(

1

2
q4(q3 − 1)(q − 1)2

)

+

(

1

3
q4(q − 1)(q2 − 1)2

)

,

which on simplification reduces to

q9 − q8 − q7 + q5 + q4 − q3 = (q3 − 1)(q3 − q)(q3 − q2) = |G|

as expected.

(b) The total number of conjugacy classes of G is

3(q−1)+2(q−1)(q−2)+
1

6
(q−1)(q−2)(q−3)+

1

2
q(q−1)2+

1

3
q(q2−1)

= q3 − q = q(q2 − 1).

The following is the summary of the results we have obtained in this section.
The following table shows the nature of the minimal polynomial of the elements
of a conjugacy class and the length of the conjugacy class.
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The nature of the Length of the
minimal polynomial, m(x) conjugacy class

x− a 1

(x− a)2 (q3 − 1)(q + 1)

(x− a)3 (q3 − 1)(q3 − q)

(x− a)(x− b) q2(q2 + q + 1)

(x− a)(x− b)2 q2(q3 − 1)(q + 1)

(x− a)(x− b)(x− c) q3(q2 + q + 1)(q + 1)

(x− a)(x2 + bx+ c) q3(q3 − 1)

x3 + ax2 + bx+ c q3(q2 − 1)(q − 1)

Table 3: The nature of the minimal polynomial and the length of the
conjugacy class

5. The Conjugacy Structure of SL(3, q)

Like in Section 3, we have investigated the cases when a conjugacy class G =
GL(3, q) splits or does not split in H = SL(3, q). As before, this is achieved by
comparing |G : NG(A)| with |H : NH(A)|, A ∈ H.

5.1. Conditions for Splitting of Conjugacy
Classes of GL(3, q) in SL(3, q)

The following theorem generalizes the conditions for splitting or not splitting
of conjugacy classes of G = GL(3, q) in H = SL(3, q).

Theorem 5.1.1. Let A ∈ H. Then

1. the conjugacy class of A in both G and H are the same when

(a) p(x) = (x− a)3, m(x) = x− a

(b) p(x) = (x− a)3, m(x) = (x− a)2

(c) p(x) = (x− a)(x− b)2, m(x) = (x− a)(x− b), a 6= b

(d) p(x) = (x− a)(x− b)2, m(x) = (x− a)(x− b)2, a 6= b

(e) p(x) = m(x) = (x− a)(x− b)(x− c), a 6= b 6= c

(f) p(x) = m(x) = (x− a)(x2 + bx+ c), where x2 + bx+ c is irreducible
in F.

(g) p(x) = m(x) = x3 + ax2 + bx+ c, which is irreducible in F.
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2. If p(x) = m(x) = (x − a)3, the conjugacy class of A in G remains the
same in H when q ≡ 0 or 2 (mod 3) but splits into 3 when q ≡ 1 (mod 3).

Proof. 1 (a) when p(x) = (x− a)3 and m(x) = x− a.
From Subsection 4.1, case 1(a), A is contained in a singleton conjugacy class

in G. Therefore A must be in its own conjugacy class in H.
(b) when p(x) = (x− a)3, m(x) = (x− a)2.
From Subsection 4.1, case 1(a),

the length of the conjugacy class of A is (q3 − 1)(q + 1) (9)

The elements of NH(A) are of the form





r s t
0 r 0
0 y z



, where its determinant is

r2z = 1, we have q− 1 choices for r, q choices for s, t, y and z is dependent on
r. Hence |NH(A)| = q3(q − 1) and so

|H : NH(A)| = (q3 − 1)(q + 1) (10)

Comparing (9) and (10) we find that there is no splitting in this case
(c) when p(x) = (x− a)(x− b)2, m(x) = (x− a)(x− b), a 6= b.
From Subsection 4.1, case 2(a),

the conjugacy class of A in G is of length q2(q2 + q + 1) (11)

The elements of NH(A) are of the form





r 0 0
0 v w
0 y z



, where

(

v w
y z

)

∈

GL(2, q) and r(vz − yw) = 1.

Since r is dependent on

(

v w
y z

)

we have

|NH(A)| = (q2 − 1)(q2 − q) = |GL(2, q)|.

Therefore

|H : NH(A)| = q2(q2 + q + 1). (12)

Comparing (11) and (12), we find that there is no splitting in this case.
(d) when p(x) = m(x) = (x− a)(x− b)2, a 6= b.
From Subsection 4.1, case 2(a),

the conjugacy class of A in G is of length q2(q3 − 1)(q + 1). (13)
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We deduce from the same section that an element in NH(A) is of the form




r 0 0
0 v w
0 0 v



, where rv2 = 1. Since r depends on v and there are q − 1 choices

for v and q choices for w, we have |NH(A)| = q(q − 1). Hence

|H : NH(A)| = q2(q3 − 1)(q + 1) (14)

. Comparing (13) and (14), we find that there is no splitting in this case.
(e) when p(x) = m(x) = (x− a)(x− b)(x− c), a 6= b 6= c.
From Subsection 4.1, case 3,

the conjugacy class of A in G is of length q3(q + 1)(q2 + q + 1) (15)

.
We deduce from the same section that an element in NH(A) is of the form





r 0 0
0 v 0
0 0 z



, where rvz = 1.

Since r depends on v and z, and v and z each can take q − 1 values, we
have |NH(A)| = (q − 1)2. Therefore

|H : NH(A)| = q3(q + 1)(q2 + q + 1). (16)

Hence comparing (15) and (16) we find that there is no splitting in this case.
(f) When p(x) = m(x) = (x− a)(x2 + bx+ c), x2 + bx+ c is irreducible

in F .
From Subection 4.1, case 4,

the conjugacy class of A in G is of length q3(q3 − 1). (17)

We deduce from the same section that an element of NH(A) is similar to a

matrix of the form





r 0 0
0 s 0
0 0 t



, where r ∈ F and s, t ∈ E (quadratic extension

of F ) and rst = 1. Since s depends on t (because they are conjugates) and r
depends on s and t, we only choose t. Since there are q2 − 1 choices for t, we
have |NH(A)| = q2 − 1. Hence

|H : NH(A)| = q3(q3 − 1). (18)

Comparing (17) and (18), we find that there is no splitting in this case.
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(g) When p(x) = m(x) = x3+ax2+ bx+ c, which is irreducible in F .
From Subsection 4.1 case 5,

the conjugacy class of A in G is of length q3(q − 1)(q2 − 1). (19)

Now from Theorem 3.2.1

|NH(A)| =
q3 − 1

q − 1
= q2 + q + 1.

So

|H : NH(A)| = q3(q − 1)(q2 − 1). (20)

Hence, comparing (19) and (20), we see that there is no splitting in this case.
2. when p(x) = m(x) = (x− a)3.
From Subsection 4.1 case 1(c), subcase (c),

the conjugacy class of A in G is of length (q3 − 1)(q3 − q). (21)

The elements of NH(A) are of the form





r s t
0 r s
0 0 r



, where r3 = 1.

Clearly the number of solutions of r3 = 1 in F ∗ is the G.C.D of 3 and q−1.
Now

(3, q − 1) =

{

1, if q ≡ 0 or 2 (mod 3)

3, if q ≡ 1 (mod 3)

So that

|NH(A)| =

{

q2, if q ≡ 0 or 2 (mod 3)

3q2, if q ≡ 1 (mod 3)

since s and t can each take q values. Hence

|H : NH(A)| =

{

(q3 − 1)(q3 − q), if q ≡ 0 or 2 (mod 3)
1
3(q

3 − 1)(q3 − q), if q ≡ 1 (mod 3)
(22)

Now comparing (21) and (22), we find that the conjugacy class of A in G
remains the same in H when q ≡ 0 or 2 (mod 3) but splits into three when
q ≡ 1 (mod 3).

From Theorem 5.1.1 above, it is clear that splitting will occur only when
p(x) = m(x) = (x − a)3 and q ≡ 1 (mod 3). The problem we are now faced
with is how to determine the conjugacy class in which an element in H with
p(x) = m(x) = (x− a)3 and q ≡ 1 (mod 3) belongs.
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5.2. Conjugacy Class Representative in SL(3, q)

Here we show the three conjugacy classes in H represent the three cubic classes
of F ∗. These are F ∗3, λF ∗3 and λ2F ∗3, where λ /∈ F ∗3 and each cubic class
represents a conjugacy class.

We now show how to determine the conjugacy class in which an element
A ∈ H belongs among the three. We begin with a proposition.

Proposition 5.2.1. Let A ∈ H with m(x) = (x − a)3 and the Jordan

form, J =





a 1 0
0 a 1
0 0 a



, then:

(a) If AB = BA, then det B = r3, r ∈ F ∗.

(b) If B = P−1AP in G and det P = r3, then B is conjugate to A in H.

(c) If B = P−1AP in G and det P = λr3, λ /∈ F ∗3 then B is not conjugate
to A in H.

Proof. (a) The elements that commute with A are of the form





r s t
0 r s
0 0 r





(see Subsection 4.1, case 1(c).
Hence B is of this form and det B = r3.

(b) Since det P = r3, let Q =





r 0 0
0 r 0
0 0 r



 then det Q = r3. We have

QBQ−1 = QP−1APQ−1

⇔ QBQ−1 = (PQ−1)−1A(PQ−1), since Q is a scalar matrix.

Clearly det(PQ−1) = 1. Hence B is conjugate to A in H.

(c) Since det P = λr3, let Q =





λr 0 0
0 r 0
0 0 r



 then det Q = λr3. We have

QBQ−1 = QP−1APQ−1

⇔ QBQ−1 = (PQ−1)−1A(PQ−1)

By Subsection 4.1, case 1(c), Q does not commute with B. Hence QBQ−1 6= B.
Clearly det (PQ−1) = 1. Hence B is not conjugate to A in H.
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Now let A ∈ H with m(x) = (x− a)3. Then the Jordan form of A is

J =





a 1 0
0 a 1
0 0 a





To find out the conjugacy class in which A belongs in H, we find a matrix X
in G such that

X−1AX = J

To get X, we find another matrix B, where B = A − aI with B2 6= 0. We
choose a vector u in the standard basis such that B2u 6= 0, so that

u → Bu → B2u → 0.

Then we use the new basis {B2u, Bu, u} to form our new matrix X. Thus
X =

(

B2u Bu u
)

. We then look at the determinant of X and check the
cubic class in which it belongs. Now matrix A belongs to the corresponding
conjugacy class. ([2], page 228).

The following is a general illustration of the method discussed above.

Let A =





a r t
0 a s
0 0 a



 with m(x) = (x− a)3. Then the Jordan form of A is

J =





a 1 0
0 a 1
0 0 a



 .

We now find X, such that X−1AX = J as explained above. Let B = A− aI,
then we have

B =





0 r t
0 0 s
0 0 0



 and B2 =





0 0 rs
0 0 0
0 0 0



 .

We choose a vector u such that B2u 6= 0. Clearly u =





0
0
1



, and

u Bu B2u




0
0
1



 →





t
s
0



 →





rs
0
0




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Hence X =





rs t 0
0 s 0
0 0 1



. Thus we find that det X = rs2.

Now for A to be a representative of F ∗3, we must choose r and s such that
rs2 ∈ F ∗3. Similarly for A to be in λF ∗3 or λ2F ∗3, we choose r and s such that
rs2 ∈ λF ∗3 or rs2 ∈ λ2F ∗3 respectively.

s and rs2 can easily be determined by choosing s to be equal to 1, then for
A ∈ F ∗3, r may be equal to 1, for A ∈ λF ∗3, r may be equal to λ and for
A ∈ λ2F ∗3, r may be equal to λ2.

Hence the general form of a class representative A in each of the three
conjugacy classes is:

(a)





a 1 0
0 a 1
0 0 a



 (b)





a λ 0
0 a 1
0 0 a



 (c)





a λ2 0
0 a 1
0 0 a




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