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Abstract

The characterization of the group of units of any commutative ring
has not been done in general, and previous studies have restricted the
classes of rings or groups under consideration. In this work, we deter-
mine the structures of the groups of units of commutative completely
primary finite rings R of characteristic pn for some prime integer p and
positive integer n.
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1 Introduction

Unless otherwise stated, J(R) shall denote the Jacobson radical of a completely
primary finite ring R. We shall denote the coefficient (Galois) subring of R by
R

′
. The rest of the notations shall be adopted from [1].

The characterization of a finite abelian group is precisely known and it has
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been represented as a direct product of cyclic groups. In this form, vital
characteristics of a finite group, such as exponent, rank and order are quite
conclusive. On the other hand, the characterization of the group of units of any
commutative ring has not been done in general, even though it is well known
that if R is a finite field, then R∗, the group of units of R, is cyclic. Moreover,
when R is a finite commutative ring, then it is known from the Fundamental
Theorem of finite abelian groups that R∗ is isomorphic to a direct product of
cyclic groups. There is no known general solution to the problem, even though
solutions to some special cases have been obtained with a restriction on R. For
the previous related work, reference can be made to [2],[3] or [4].

2 The Construction

Let R
′
be the Galois ring of the form GR(pnr, pn). For each i = 1, ..., h ,

let ui ∈ J(R), such that U is an h- dimensional R
′
-module generated by

{u1, ..., uh} so that R = R
′ ⊕ U is an additive group. On this group, define

multiplication by the following relations:
(i) If n = 1, 2, then pui = uiuj = ujui = 0, uir

′
= (r

′
)σiui

(ii) If n ≥ 3, then

pn−1ui = 0, uiuj = p2γij, u
n
i = un−1

i uj = uiu
n−1
j = 0, uir

′
= (r

′
)σiui,

where r
′
, γij ∈ R

′
, 1 ≤ i, j ≤ h, p is a prime integer, n and r are positive inte-

gers and σi is the automorphism associated with ui. Further, let the generators
{ui} for U satisfy the additional condition that if ui ∈ U , then pui = uiuj = 0.

From the given multiplication in R, we see that if r
′
+

∑h
i=1 λiui

and s
′
+

∑h
i=1 λiui, r

′
, s

′ ∈ R
′
, γi, λi ∈ F0 are elements of R, then

(r
′
+

h∑
i=1

λiui)(s
′
+

h∑
i=1

λiui) = r
′
s
′
+

h∑
i=1

[(r
′
+ pR

′
)γi + λi(s

′
+ pR

′
)σi ]ui.

It is easy to verify that the given multiplication turns R into a ring with
identity (1, 0, ..., 0). We also notice that p ∈ J(R).

3 Preliminary Results

Lemma 1. The ring described by the construction is commutative iff σi =
idR′ for each i = 1, ..., h.

Remark: If n =1 or 2, then the construction yields rings in which multipli-
cation of any two zero divisors is zero, that is, (J(R))2 = (0). Such rings are
well known to be completely primary.
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Proposition 1. Let R
′

= GR(pnr, pn) where n ≥ 3. Then, the ring R
described by the construction is completely primary and of characteristic pn

satisfying;
(i) J(R) = pR

′ ⊕ U
(ii) (J(R))n−1 = pn−1R

′

(iii) (J(R))n = (0)

In the sequel, the rings that satisfy the above three properties shall be
called, rings with property A.

Lemma 2. Let R be a commutative ring with property A, then R∗ is
cyclic iff 1 + J(R) is cyclic. Moreover,

R∗ =< a > .(1 + J(R)) ∼=< a > ×(1 + J(R)),

a direct product of the p− group 1+J(R) by the cyclic subgroup < a >, where
o(a) = pr − 1.

Proof. Easily follows from the fact that R is a commutative completely
primary finite ring.

In order to completely classify R∗, we need to determine the structure of
1 + J(R).
Since R∗ is abelian, 1 + J(R) is a normal subgroup of R∗.
In particular, let R be a ring with property A. Then 1 + J(R) is an abelian
p− subgroup of the unit group R∗. The group 1 + J(R) has a filtration

1 + J(R) ⊃ 1 + (J(R))2 ⊃ ... ⊃ 1 + (J(R))n = {1}

with filtration quotients

1+J(R)/1+(J(R))2, 1+(J(R))2/1+(J(R))3, ..., 1+(J(R))n/1 = 1+(J(R))n

isomorphic to the additive groups

J(R)/(J(R))2, (J(R))2/(J(R))3, ..., (J(R))n

respectively.
We now state some Lemmata used in the determination of the structure of
1 + J(R).

Lemma 3. For each prime integer p, 1 + pR
′
is a subgroup of 1 + J(R).

Proof. Easy

Lemma 4. For each 1 ≤ j ≤ h, 1+
∑h

j=1 ⊕R
′
uj is a subgroup of 1+J(R).
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Proof. Easy

Lemma 5. Let ann(J(R)) be the two sided annihilator of J(R). Then
1 + ann(J(R)) is a subgroup of 1 + J(R).

Proof. Obviously, 1 + ann(J(R)) = 1 +
∑h

j=1 ⊕R
′
uj when charR = p or

1+ann(J(R)) = 1+ pn−1R
′ ⊕∑h

j=1 R
′
uj when charR = pt, t ≥ 2. We give the

proof when charR = pt, t ≥ 2 as the other case easily follows from this (see the

previous Lemma).Now, let 1 + pn−1r
′
+

∑h
j=1 λjuj, 1 + pn−1s

′
+

∑h
j=1 λ̂juj ∈

1 + ann(J), λj , λ̂j ∈ F0, r
′
, s

′ ∈ R
′
, 1 ≤ j ≤ h. Then

(1 + pn−1r
′
+

∑h
j=1 λjuj)(1 + pn−1s

′
+

∑h
j=1 λ̂juj)

−1

= (1 + pn−1r
′
+

∑h
j=1 λjuj)(1 − pn−1s

′ − ∑h
j=1 λ̂juj)

= 1 + pn−1(r
′ − s

′
) +

∑h
j=1(λj − λ̂j)uj an element of 1 + ann(J(R)).

Lemma 6. The p− group 1 + J(R) is a direct product of the subgroups
1 + pR

′
by 1 +

∑h
i=1 ⊕R

′
ui.

Proof. Clearly 1+pR
′
and 1+

∑h
i=1 ⊕R

′
ui are normal subgroups of 1+J(R).

Also, (1 + pR
′
) ∩ (1 +

∑h
i=1 ⊕R

′
ui) = {1}. Finally

| 1 + pR
′ | | 1 +

h∑
i=1

⊕R
′
ui |

= p(n−1)r.prh

= p(n+h−1)r

=| 1 + J(R) | .

Remark: Since U ⊆ ann(J(R)) = pn−1R
′ ⊕ ∑h

i=1 ⊕R
′
ui or

∑h
i=1 ⊕R

′
ui we

notice that pui = 0 for each ui ∈ U, (1 ≤ i ≤ h).

4 Main Results

Proposition 2. Let R be a commutative finite ring from the class of finite
rings described by the construction. If U is generated by {u1, ..., uh}, then it
is also generated by {u1, u1 + u2, ..., u1 + u2 + ... + uh}.

Proposition 3. Let R be a commutative finite ring from the class of
finite rings described by the construction. If h ≥ 1 and charR = p, then
1 + J(R) ∼= (Zr

p)
h.
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Proof. See e.g [4]

Proposition 4. Let R be a commutative finite ring from the class of
finite rings described by the construction. If h ≥ 1 and charR = p2, then
1 + J(R) ∼= Zr

p × (Zr
p)

h.

Proof. Let λ1, ..., λr ∈ R
′
with λ1 = 1 such that λ1, ..., λr ∈ R

′
/pR

′
form

a basis for R
′
/pR

′
regarded as a vector space over its prime subfield GF (p).

We note that for every ν = 1, ..., r (1 + pλν)
p = 1, (1 + λνu1)

p = 1, (1 +∑2
i=1 λνui)

p = 1,...,(1+
∑h

i=1 λνui)
p = 1. For positive integers αν , β1ν ,..., βhν

with αν ≤ p , βiν ≤ p (1 ≤ i ≤ h, 1 ≤ ν ≤ r), we notice that the equation

r∏
ν=1

{(1 + pλν)
αν}.

r∏
ν=1

{(1 + λνu1)
β1ν}.

r∏
ν=1

{(1 +
2∑

i=1

λνui)
β2ν}...

r∏
ν=1

{(1 + λνui)
βhν = {1}

will imply αν = βiν = p for every ν = 1, ..., r and 1 ≤ i ≤ h. If we set

Tν = {(1 + pλν)
α | α = 1, ..., p},

S1ν = {(1 + λνu1)
β1 | β1 = 1, ..., p}

S2ν = {(1 +
2∑

i=1

λνui)
β2 | β2 = 1, ..., p}

...

Shν = {(1 +

h∑
i=1

λνui)
βh | βh = 1, ..., p}

we see that Tν , S1ν, ..., Shν are all cyclic subgroups of the group 1 + J(R) and
they are each of order p. Since

r∏
ν=1

|< 1 + pλν >| .

r∏
ν=1

|< 1 + λνu1 >| .

r∏
ν=1

|< 1 +

2∑
i=1

λνui >|

...

r∏
ν=1

|< 1 +

h∑
i=1

λνui >|= p(h+1)r

and the intersection of any pair of the cyclic subgroups gives the identity group,
the product of the (h + 1)r subgroups Tν , S1ν, S2ν,...,Shν is direct. So their
product exhausts the group 1 + J(R).
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Proposition 5. Let R be a ring with Property A. If h ≥ 1,then

1 + J(R) ∼=
⎧⎨
⎩

Z2 × Z2n−2 × Zr−1
2n−1 × (Zr

2)
h if p = 2

Zr
pn−1 × (Zr

p)
h if p �= 2

Proof. Let λ1, ..., λr ∈ R
′
with λ1 = 1 such that λ1, ..., λr ∈ R

′
/pR

′
form

a basis for R
′
/pR

′
regarded as a vector space over its prime subfield GF (p).

Since the two cases do not overlap, we consider them separately.
Case (i): p = 2.

Suppose ν = 1, ..., r and y is an element of R
′
such that x2 + x + y = 0 over

R
′
/pR

′
has no solution in the field R

′
/pR

′
, we obtain the following results:

−1 + 2n−1λ1 ∈ 1 + pR
′
, (−1 + 2n−1λ1)

2 = 1, (1 + 4y)2n−2

= 1

and z2n−1
= 1 for each z ∈ 1 + pR

′
. Also (1 + 2λν)

2n−1
= 1 for ν = 2, ..., r,

(1 + λνu1)
2 = 1, (1 +

2∑
i=1

λνui)
2 = 1, ..., (1 +

h∑
i=1

λνui)
2 = 1

for every ν = 1, ..., r. Now, consider positive integers α, β, κν , τ1ν ,...,τhν with
α ≤ 2, β ≤ 2n−2 , κν ≤ 2n−1 for 2 ≤ ν ≤ r), and τiν ≤ 2 for every ν = 1, ..., r
and 1 ≤ i ≤ h. We notice that the equation

(−1 + 2n−1λ1)
α.(1 + 4y)β.

r∏
ν=2

{(1 + 2λν)
κν}.

r∏
ν=1

{(1 + λνu1)
τ1ν}.

r∏
ν=1

{(1 +
2∑

i=1

λνui)
τ2ν}...

r∏
ν=1

{(1 +
h∑

i=1

λνui)
τhν} = {1}

will imply α = 2, β = 2n−2, κν = 2n−1 for ν = 2, ..., r and τiν = 2 for each
ν = 1, ..., r and 1 ≤ i ≤ h. If we set

H = {(−1 + 2n−1λ1)
α | α = 1, 2},

Q = {(1 + 4y)β | β = 1, ..., 2n−2},
Tν = {(1 + 2λν)

κ | κ = 1, ..., 2n−1}, ν = 2, ..., r

S1ν = {(1 + λνu1)
τ1 | τ1 = 1, 2}

S2ν = {(1 +
2∑

i=1

λνui)
τ2 | τ2 = 1, 2}

...
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Shν = {(1 +

h∑
i=1

λνui)
τh | τh = 1, 2}

we see that H , Q, Tν , S1ν, ..., Shν are all cyclic subgroups of the group 1+J(R)
and they are of the orders indicated in their definition. Since

|< −1 + 2n−1λ1 >| . |< 1 + 4y >| .

r∏
ν=2

|< 1 + 2λν >| .

r∏
ν=1

|< 1 + λνu1 >| .

r∏
ν=1

|< 1 +
2∑

i=1

λνui >| ...
r∏

ν=1

|< 1 +
h∑

i=1

λνui >|= 2(n+h−1)r

and the intersection of any pair of the cyclic subgroups gives the identity
group, the product of the (h+1)r+1 subgroups H , Q, Tν , S1ν,...,Shν is direct.
Therefore, their product exhausts the group 1 + J(R).
Case (ii):p is odd
For every ν = 1, ..., r, (1 + pλν)

pn−1
= 1, (1 + λνu1)

p = 1, (1 +
∑2

i=1 λνui)
p =

1,...,(1+
∑h

i=1 λνui)
p = 1. For positive integers αν , β1ν ,...,βhν with αν ≤ pn−1 ,

βiν ≤ p (1 ≤ i ≤ h), we notice that the equation

r∏
ν=1

{(1 + pλν)
αν}.

r∏
ν=1

{(1 + λνu1)
β1ν}

r∏
ν=1

{(1 +

2∑
i=1

λνui)
β2ν}

...
r∏

ν=1

{(1 +
h∑

i=1

λνui)
βhν = {1}

will imply αν = pn−1, βiν = p for every ν = 1, ..., r and 1 ≤ i ≤ h. If we set

Tν = {(1 + pλν)
α | α = 1, ..., pn−1},

S1ν = {(1 + λνu1)
β1 | β1 = 1, ..., p}

S2ν = {(1 +

2∑
i=1

λνui)
β2 | β2 = 1, ..., p}

...

Shν = {(1 +
h∑

i=1

λνui)
βh | βh = 1, ..., p}

we see that Tν , S1ν, ..., Shν are all cyclic subgroups of the group 1 + J(R) and
they are of the orders indicated by their definition. Since

r∏
ν=1

|< 1 + pλν >| .
r∏

ν=1

|< 1 + λνu1 >| .
r∏

ν=1

|< 1 +
2∑

i=1

λνui >|

...
r∏

ν=1

|< 1 +
h∑

i=1

λνui >|= p(n+h−1)r
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and the intersection of any pair of the cyclic subgroups gives the identity group,
the product of the (h+1)r subgroups Tν , S1ν, S2ν ,...,Shν is direct. The product
exhausts the group 1 + J(R) and this completes the proof.

We now state the main result.

Theorem 1. The unit group R∗ of the commutative completely primary
finite ring R of characteristic pn with maximal ideal J(R) such that (J(R))2 =
(0) when n = 1, 2; and (J(R))n = (0), (J(R))n−1 �= (0), when n ≥ 3, and with
invariants p (prime integer), p ∈ J(R), r ≥ 1 and h ≥ 1 is a direct product of
cyclic groups as follows:
i) If charR = p, then

R∗ ∼= Zpr−1 × (Zr
p)

h

ii) If charR = p2, then

R∗ ∼= Zpr−1 × Zr
p × (Zr

p)
h

iii) If charR = pn; n ≥ 3, then

R∗ ∼=
⎧⎨
⎩

Z2r−1 × Z2 × Z2n−2 × Zr−1
2n−1 × (Zr

2)
h if p = 2

Zpr−1 × Zr
pn−1 × (Zr

p)
h if p �= 2
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