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Catchments are complex systems, which require regular monitoring of hydro-chemical

parameters in space and time to provide comprehensive datasets. These are needed

to characterize catchment behavior on a local level, make future projections based

on models, implement mitigation measures and meet policy targets. However, many

developing countries lack a good infrastructure for hydrological monitoring since

its establishment is costly and the required resources are often not available. To

overcome such challenges in data scarce regions like Kenya, a participatory citizen

science approach can be a promising strategy for monitoring water resources. This

study evaluates the potential of using a contributory citizen science approach to

explore spatiotemporal turbidity and suspended sediment dynamics in the Sondu-Miriu

river basin, western Kenya. A group of 19 citizen scientists was trained to monitor

turbidity using turbidity tubes and water levels with water level gauges in six nested

subcatchments of the Sondu-Miriu river basin. Over the course of the project, a total of

37 citizen scientists participated and contributed to the overall dataset of turbidity. The

sampling effort and data contribution varied from year to year and among participants

with the majority of the data (72%) originating from 8 (22%) citizen scientists. Comparison

between citizen-scientist collected suspended sediment data and measurements from

automated stations showed high correlation (R2
> 0.9) which demonstrates that data

collected by citizen scientists can be comparable to data collected using expensive

monitoring equipment. However, there was reduced precision of the measurements

of suspended sediment concentrations at low and high levels attributed largely to

the detection limitations of the turbidity tubes and citizen scientists not capturing

major sediment export events. Suspended sediment concentrations were significantly

higher downstream (109 ± 94mg L−1), a subcatchment dominated by agriculture

and rangeland with low forest vegetation cover, as compared to a subcatchment with

high forest cover (50 ± 24.7mg L−1). This finding indicates that forest cover is a

key landscape feature to control suspended sediment concentrations in the region.
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Future citizen science projects should focus on motivation and engagement strategies

and the application of robust methods with improved detection limits and resolution to

advance hydrological monitoring.

Keywords: catchment, citizen science, suspended sediments, turbidity, Sondu-Miriu river basin, Mau Forest

Complex

INTRODUCTION

In the tropics, natural ecosystems and water resources are
increasingly threatened by several factors including growing
human population, climate change, deforestation, and increased
cropping and grazing intensities (Smith et al., 2016; Shupe,
2017; Berihun et al., 2019). Consequently, many tropical forest
ecosystems have been subject to disturbances, which vary
through time and space. Previous studies have demonstrated the
effect of land use change on soil erosion and sediment yield,
with conversion of forest to agricultural or grazing land yielding
the highest soil loss due to changes in soil properties such as
reduced infiltration rates and water retention capacity (Owuor
et al., 2018; Stenfert Kroese et al., 2020b). Increased surface
runoff may lead to flooding and accelerates sediment transport
processes, resulting in amplification of the sediment load in rivers
(Pacheco et al., 2014; Owuor et al., 2018). Monitoring of sediment
loads in catchments is important for the development of soil
erosionmanagement and control strategies, to inform policies for
water resources management and for the validation of spatially
distributed sediment delivery models (Akrasi, 2005; Kuhnle and
Wren, 2005; Gao et al., 2007).

Much of the recent focus in hydrogeochemical research
has been on the use of models, remote sensing and high
resolution automated monitoring systems to further improve
our understanding of ecological systems (Baldyga et al., 2008;
Jacobs et al., 2018; Esteves et al., 2019). Although these
approaches have been widely used to inform decision making
for environmental management, they are expensive and their
application within most developing countries is still hampered
by poor infrastructure and technical capabilities (Olang and
Fürst, 2011; Nardi et al., 2020). As a consequence, relatively
few hydrogeochemical datasets exist (Zheng et al., 2017). As the
acquisition of field data with high spatial and temporal resolution
is very important for sustainable water resource management
and governance, this clearly raises the need to explore alternative
cost-effective approaches for data collection (Njue et al., 2019;
Malthus et al., 2020).

Advances in technology and the rise of robust simple and
cheap sensing equipment provides unprecedented opportunities
for data collection using citizen science in hydrological sciences
and water resources management, especially in data scarce
regions (Buytaert et al., 2014; Zheng et al., 2017). Citizen science
refers to the involvement of the general public within the
scientific research process for the generation of new scientific
knowledge (Bonney et al., 2009b; Buytaert et al., 2014). Although
citizen science is still uncommon practice in water research,
we recognize that its uptake in low-income countries such
as Kenya is gradually rising (Njue et al., 2019), especially in

monitoring of precipitation, water levels and water quality
(Gomani et al., 2010; Kongo et al., 2010; Walker et al., 2016;
Weeser et al., 2018). As a scientific method, citizen science is
acknowledged to play an important role in delivering valuable
and robust environmental data from local to national scales,
increasing knowledge of science and reducing monitoring costs
(Bonney et al., 2009a; Silvestro et al., 2012; Haklay, 2015).
Moreover, citizen observations can provide quality and detailed
ground-based data for calibration and validation of satellite-
based earth observation and high-resolution automated stations
(Fritz et al., 2017; Nardi et al., 2020). Njue et al. (2019) present
a comprehensive review on the successful implementation,
contribution, and significant growth in application of state-of-
the-art citizen science approaches in hydrological monitoring in
the past two decades. Looking ahead, citizen science could be
used cost-effectively not only to fill data and information gaps,
but also to work collaboratively with communities to generate
relevant management-oriented knowledge.

This study aimed to evaluate the potential of using citizen
science to explore spatiotemporal suspended sediment dynamics
using turbidity as a proxy in the Sondu-Miriu river basin in
Kenya. The Sondu river originates in the Mau Forest Complex,
which is one of Kenya’s remaining indigenous tropical montane
forests. The Mau Forest Complex experienced a significant
loss of 25% forest cover between 1973 to 2013 through illegal
logging, forest excisions, charcoal burning and encroachment
for settlement and subsistence farming by smallholder farmers
(Olang and Kundu, 2011; Otuoma et al., 2012; Swart, 2016;
Brandt et al., 2018). Previous studies have linked deforestation in
the Mau Forest Complex, to changes in hydrological processes
such as changes in flow regimes, soil and water quality
deterioration in the catchment (Masese et al., 2012a; Otuoma
et al., 2012; Jacobs et al., 2017; Owuor et al., 2018). Masese et al.
(2012a) highlight that due to the combined effects of human
activities in the Sondu-Miriu river basin, turbidity has more
than doubled in 30 years from a mean of 60 NTU in 1988 to
130 NTU in 2012. This could contribute to the accumulation of
sediments in Lake Victoria at a rate of 2.3mm year−1 and its
effect on eutrophication (Verschuren et al., 2002; Zhou et al.,
2014). Additionally, there has been a growing concern amongst
the local officials in the water sector and water resource users
on the significant increase in sediment transport in the Sondu
river basin, which could be linked to high levels of encroachment
(Kinyanjui, 2009).

Being the primary catchment area of the Sondu river, the
Mau Forest Complex plays a critical role in the management
of water resources, water quality and erosion. The Sondu river
is not only important as a source of water for commercial (tea
and forestry plantations) as well as smallholder agricultural and
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domestic use, but also for hydropower production. Improving the
knowledge on water flows and suspended sediments dynamics in
catchments with hydroelectric power plants is crucial (Esteves
et al., 2019). Therefore, the collection of data to evaluate
the spatial and temporal variability of sediment loads with
the Sondu-Miriu river basin is needed to establish a proper
baseline to assess alternative future management strategies. We
hypothesized that citizen science is a cost-effective, and robust
approach for data collection for sustainable water resource
management, as it reduces the costs of suspended sediment
monitoring and significantly improves data coverage. To our
knowledge, this study presents the first analysis of community-
based monitoring of sediment dynamics in a tropical forested
catchment in East Africa.

MATERIALS AND METHODS

Catchment Description
The study was carried out in the Sondu-Miriu river basin (3,450
km2) which originates in the Mau Forest Complex and drains
into Lake Victoria at an elevation range of 1,140 to 2,900m a.s.l
(Figure 1A). The temporal rainfall distribution in the basin is
driven by the intertropical convergence zone, generally exhibiting
a bimodal rainfall pattern. A longer rainy season occurs from
April to July, with rainfall peaks in April and May (>250mm per
months) in the upper part of the catchment, and a shorter rainy
season between October and December. During the dry season
in January and February the area receives the lowest amount
of rainfall (<75mm per months). The annual average rainfall
ranges from 1,300mm year−1 in the lowland areas to 1,900mm
year−1 in the highlands. Mean annual temperatures range from
16◦C to 22◦C (Stephens et al., 1992; Vuai et al., 2012), with a
potential evapotranspiration rate of 1,400 to 1,800 per annum at
the uplands and lower altitudes, respectively (Krhoda, 1988).

The Sondu-Miriu river basin is characterized by diverse land
use types. The upper highland zone is dominated by small-
scale farming in the eastern part and indigenous forest and
woodlands, which are part of the Mau Forest Complex, in
the central part (Figure 1B). From the edge of the forest to
the west, the land opens up to a rich upland agricultural area
characterized by commercial tea and tree plantations. Moving
downstream to the lower midland zone, a mixed land use pattern
comprising of smallholder agriculture predominate with more
settlements. In this area most of the natural vegetation has
been replaced by exotic tree species interplanted with crops
(Jaetzold and Schmidt, 1983;Masese et al., 2012b). The lateral and
longitudinal distribution of the riparian zones varies in terms of
their structure, with severely degraded flood plains in some sites
and those adjacent to agricultural land dominated by exotic tree
species such as Eucalyptus spp. The riparian zones adjacent to
the tea estates are well-maintained with dense native vegetation
forming a buffer up to 30m distance (Njue et al., 2016). Farming
of crops such as maize, beans and potatoes as well as livestock
keeping by smallholder farmers plays an important role in the
area for both subsistence and economic purposes.

Generally, the soils are well-drained, deep (>1.8m), fine
textured with humic topsoil of high agricultural potential

(Jaetzold and Schmidt, 1983). The predominant soils are humic
Nitisols in the upper zones and Acrisols in the middle and
Regasolos in the lower zones. Mollic Andosols, Cambisols,
Phaeozems, Planosols, Vertisols, and Ferralsols are found in
smaller proportions (Sombroek et al., 1982; Jaetzold and Schmidt,
1983; Ouma et al., 2011; Vuai et al., 2012) (Table 1).

Citizen Science Recruitment and Training
The study was designed as a “contributory” citizen science
monitoring program, i.e., a scientist-directed program with
citizen scientists primarily contributing to data collection
(Bonney et al., 2009a). We selected six monitoring sites
for turbidity monitoring out of the existing 13 sites for
citizen science water level monitoring described in Weeser
et al. (2018) (Figure 1A). During selection, we considered
the accessibility and proximity to potential citizen scientists.
Physical characteristics for the sites and their corresponding
subcatchments are provided in Table 1.

With the help of local administration and Water Resource
Users Associations (WRUAs), sensitization meetings with the
local community members were conducted at the selected sites.
WRUAs were considered a good entry point to reach the
community members as these are community groups formed out
of local water users to promote sustainable and equitable water
use through management and conservation of water resources
(Richards and Syallow, 2018). The aim of the sensitization
meetings was to promote the project and identify potential
participants whowould volunteer in the water qualitymonitoring
program. To understand the local knowledge, level of awareness
and perception of the local community on water quality and
supply, sensitization meetings allowed interactive discussions
between citizens and scientists. Besides, a conceptual model
of a river system representation in a poster was used to
help the participants understand the basic concepts of what a
catchment is and how it generally works. Beyond contributing
data for scientific purposes, the participants were sensitized on
the importance of community-based monitoring in generating
data to inform policy, conservation and land management at
local level.

Following the sensitization meetings, 19 citizen scientists, ∼3
participants per site (21% female and 79% male), were recruited
from the local community based on their interest and willingness
to participate and contribute to the monitoring program. Even
though participation was open to all community members,
several factors may have influenced the citizen’s decision to
participate in the project and this could explain why more men
participated than women. The majority of the citizen scientists
were between 25 and 34 years old (42.1%, n = 8) with 21.1%
(n= 4) of the participants between 45 and 54 years. Respectively,
15.8% (n = 3) and 10.5% (n = 2) were above 55 years and
below 24 years. 31.6% (n = 6) of the participants had primary
education, 52.6%, (n= 10) had secondary level of education, and
15.8% (n= 3) were college educated (e.g., vocational training and
University) (Table 2).

At each site, a 1-day training session was conducted during
which the participants were informed about the research design,
and trained on sample collection and measurement procedures,
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FIGURE 1 | Map of the study area showing (A) elevation (SRTM digital elevation model 30m resolution; USGS, 2000), citizen science stations and automatic water

monitoring network and (B) land use within the Sondu-Miriu River Basin.

data recording and submission Following training, multiple
test measurements were made by the team of participants and
compared to those taken by instructors. Each citizen scientist was
equipped with a turbidity tube, water-sampling device, and an
instruction manual in simple language. To avoid communication
barriers the trainings were carried out in Swahili. Moreover,
the measurement process was explained in the manual using

pictures and instructions written in English as well as Swahili.
Citizen scientists were encouraged to send water level and
turbidity data at least twice per week. To encourage sustained
engagement, we implemented a reimbursement of cell phone
credit worth US$ 0.50 monthly (equivalent to 50 text messages)
to the participants to compensate the costs incurred by sending
the text message.
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TABLE 1 | Catchment characteristics of the monitoring subcatchments in the Sondu-Miriu river basin, Kenya.

Station name Chemosit 1JB03 Kipsonoi 1JF06 Kiptiget 1JA02 Kuresoi Sondu 1JG05 Yurith 1JD03

Site-ID CMT KIP KGT KUR SNU YRH

Coordinatesa 0◦28’59.628“S

35◦10’52.956”E

0◦42’30.768“S

35◦13’16.704”E

0◦33’17.358“S

35◦15’29.820”E

0◦24’4.024“S

35◦28’31.733”E

0◦23’42.426“S

35◦0’57.540”E

0◦ 45’ 26.820“ S

35◦ 7’ 22.788” E

Area [km²] 1,021 393 185 27 3,252 1,569

Elevation range

[m.a.s.l]

1,721–2,932 1,841–2,934 1,890–2,692 2,389–2,692 1,504–2,932 1,632–2,932

Mean slope [◦] 7.4 8.5 7.6 6.6 6.7 6.9

Land usesb Forest cover (51%),

rangeland 8%),

Smallholder

agriculture (32%), tea

plantation (7%), and

tree plantation 2%)

Forest cover (47%),

rangeland (14%),

smallholder agriculture

(37%), tea plantation

(1%), and tree

plantation (1.3%)

Forest cover 65%),

rangeland 7%),

smallholder agriculture

(22%), tea plantation

(4%), and tree

plantation (1%)

Forest cover (16%),

rangeland (15%),

smallholder agriculture

(64%), and tree

plantation (4.4%)

Forest cover (36%),

rangeland 13%),

smallholder agriculture

(45%), tea plantation

5%), and tree

plantation (2%)

Forest cover (48%),

rangeland (9%),

smallholder agriculture

(33%), tea plantation

(8%), and tree

plantation (2%)

Dominant soil

typesc
Humic Nitisols (68%)

and Mollic Andosols

(30%)

Humic Nitisols (47%)

and Mollic Andosols

(49%)

Humic Nitisols (100%) Humic Nitisols (98%) Humic Nitisols (46%),

Eutric Planosols

(12%), Rhodic

Ferralsols (11%), and

Vertic Luvisols (10%)

Humic Nitisols (99%)

aCoordinate system: WGS 1984.
bSwart (2016).
cKENSOTER Geology data from the Soil and Terrain database for Kenya (KENSOTER) version.

TABLE 2 | Diversity in gender, age, education level, and distance to the

monitoring station of the 19 trained citizen scientists.

Variable Category % Citizen scientists

Gender Male 78.9%

Female 21.1%

Age 24 or younger 10.5%

25–34 42.1%

35–44 10.5%

45–54 21.1%

55 or older 15.8%

Education Level Primary school 31.6%

Secondary school 52.6%

College education 15.8%

Distance to the station <0.5 km 42.1%

0.5–1 km 36.8%

1–2 km 5.3%

>2 km 15.8%

Field Data Acquisition and Transmission
Citizens measured turbidity using a modified Wagtech turbidity
tube (Total Ex-Works Wagtech Projects, Thatcham UK). The
viewing disk of the turbidity tube was modified to a yellow
background colored with a black checker pattern to increase
visibility. Turbidity was measured by filling the turbidity tube
with river water, collected off the riverbank without disturbing
the sediment, until the pattern on the disk fixed at the bottom
of the tube was no longer visible when viewed from above.
Turbidity was then estimated by reading the water level in the
tube against the scale on the turbidity tube with values ranging

from 5 to 500 TU (see details on calibration of turbidity tubes
given below). In cases where the bottom was clearly visible when
the turbidity was full, the turbidity reading was recorded as zero
to indicate that the measurements were below the detection limit
of the turbidity tube. Although Mitchell et al. (2007) advises
to take the upper mark when the water level falls between two
scale marks, this approach seems to underestimate suspended
solid concentrations. Instead, we used a second commonly used
approach which is to estimate a fractional value between the two
scale marks, assuming a linear scale. In addition to turbidity,
citizen scientists took water level data by reading the value from
a water level gauge installed at the site.

After taking the measurements, the citizen scientists sent
a text message containing the records and a site-specific
ID using their mobile phones to the central database.
The submitted data was then parsed by a script (using
open source programming languages—Python and JavaScript)
and interpreted to associate measurements with the specific
monitoring station and parameter. Further information on data
transmission and processing is detailed in Weeser et al. (2018).
Additionally, the participants recorded data onto a standard
form in the field. The data collection started in September 2017
and is still ongoing. For the present study we compiled and
processed the dataset collected up to September 2019, covering
a representative range of hydrological variations coinciding with
seasonal changes in the Sondu-Miriu river basin.

Analysis of Level of Engagement
To gain a deeper understanding of the citizen scientists’
participation pattern over time we used several measures. These
include counting the total valid data records of individual
participants submitted over the monitoring period from
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September 2017 to September 2019, analyzing the participation
of each participant per site over time, classification of activity of
participants, and computing the corresponding Gini coefficient
using the approach frequently used to determine inequality
of income (Atkinson, 1970). The latter approach has been
applied in other citizen science projects to evaluate participants’
contributions (Sauermann and Franzoni, 2015; Scott and Frost,
2017). A Gini coefficient is based on the Lorenz curve, which
indicates the cumulative data contribution (y-axis) that is made
by a cumulative share of participants (x-axis). A 45◦ line
corresponds to total equality, i.e., all participants contribute the
same amount of data. The Gini coefficient was then calculated
as the ratio of the area between the 45◦ line and the Lorenz
curve over the total area under the 45◦ line. A Gini coefficient
of 0 expresses perfect equality, i.e., equal sampling among
participants during the entire monitoring period, whereas a
coefficient of 1 expressesmaximal unequal sampling effort among
participants (Atkinson, 1970).

To provide insight into individual’s micro-level participation
pattern, we categorized the degree of participation into very
active, active, moderate, and less active participation, based
on the frequency of participation over time and total data
contributions. The very active participants are defined as
those that sampled more intensively over a longer period
(at least 20 months over a minimum of 25 consecutive
months), characterized by more monthly contribution (at least
8 measurements per month) and a dataset exceeding 100 records.
Active participants are those that contributed data consistently
on multiple days in a month (at least four measurements
per month) during the first 10 months after inception and
characterized by a dataset ranging from 50 to 100 records.
Moderately active participants are those that contributed data
occasionally with few very active months (contributed at least
2–4 measurements in active months) and characterized by a
dataset ranging from 20 to 50 records. Less active participants are
those whose participation was infrequent (had not contributed
data for over 12 months continuously after their initial
month of participation) and of low intensity (contributed 1–2
measurements in active months), with a dataset of <20 records
over the monitoring period.

Calibration
Calibration of the turbidity tubes was conducted and a
relationship between turbidity and suspended sediments
concentrations (SSC) was established from all the datasets
obtained from the six citizen science monitoring stations
and two automated monitoring stations, respectively. This was
achieved by preparing suspensions covering a range of suspended
sediment concentrations using fine sediments collected from
different locations in the riverbed at each sampling site. We took
the site-specific samples to account for potential differences in
the physical and geochemical characteristics of the catchment
and have a reasonable representation of the sediment transported
in the catchment. The fine sediment material collected was first
sieved to remove gravel and particles larger than 0.5mm. Then
a suspension was prepared in a bucket using the fine sediment
material and river water. Further separation was done after 100 s,

corresponding to a theoretical grain size of >50µm following
Stoke’s law (Equation 1) by decanting the suspension in another
bucket. The decanted suspension was used for the calibration.
The settling time was calculated using the equation:

t =
18ηh

(

ρs − ρl

)

X2g
(1)

Where t is the settling time, η is the fluid viscosity [kg/ms], h
is the settling depth [m], ρ l is the liquid density [kg/m3], ρs is
the particle density [kg/m3], g is the acceleration due to gravity
[m/s2], and X is the particle diameter [m].

To obtain the required range of turbidity and suspended
sediment concentrations, dilutions were made from the main
suspension using clear water. The unit scale of the turbidity
tube ranging from 5 to 500 TU was used to guide the
calibration process. For each stepwise dilution, the suspension
was homogenized by stirring the suspension continuously to
prevent settling of sediments, filled in the tubes and the tubes’
turbidity was recorded. We then calibrated the suspension in
two ways. In the first one, 250mL of the suspension was
taken for the analysis of the suspended sediment concentration
(mg L−1), which was determined gravimetrically, to determine
the relationship between turbidity and SSC (Gray et al.,
2000; Anderson and Davie, 2004). In a second approach, we
measured the turbidity using the spectro::lyser installed at
the two monitoring sites at KUR and CMT. The turbidity
values recorded with the turbidity tube and spectro::lyser were
calibrated against suspended sediment concentrations for each
site using empirically derived linear regression models to allow
for statistical prediction of these parameters.

Data Validation
Two sites (KUR and CMT) were located next to automatic
monitoring stations measuring turbidity in FTU (formazin
turbidity unit) using a UV-Vis based sensor (spectro::lyser, SCAN
Messtechnik, Vienna, Austria) and water level with a radar-based
sensor (VEGAPULS WL61, VEGA Grieshaber KG, Schiltach,
Germany) at 10-min interval. Stenfert Kroese et al. (2020a)
provide a detailed description of the stations. Turbidity data
from the sensors were calibrated following the same approach
as described in Section Data Validation. These data were used
to evaluate the accuracy of the citizen-science data using a
linear regression model. For each data point in the citizen
science dataset, the corresponding measurement at the same
day and time (±10min) was obtained from the automated
stations. Following the assumption that citizen scientists would
not measure after sunset, measurements received by the SMS
server past 6 pm were omitted to control sources of variability
between the actual time the measurement was taken and when
it was submitted, as this may account for differences when
comparing the two datasets. Additionally, measurements which
were taken at the same time by different participants but did not
match or those that did not have a valid measurement from the
automated station were excluded.
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Quality Control and Assurance
Our study adopted multiple quality control measures to ensure
the production of valid data that can yield both scientific and
educational outcomes as proposed by (Wiggins et al., 2011).
This involved developing simple and standardized data collection
protocols and monitoring tools (manual containing instructions
and water sampling equipment) that were essential for the
process. Further, we trained the participants before embarking on
the monitoring program and tracked their performance through
follow-up meetings once per month. Additional quality control
measures include replication through multiple measurements by
the same participant and by having 3 or 4 participants per site to
reduce sampling error and bias, submission of data to the central
database along with field data sheets for verification, as well as
manual screening and identification of outliers in the dataset.
Furthermore, the citizen science generated data was compared
and validated with the data recorded by the spectro::lyser sensor
of the automated stations.

Due to the low number of cases of data replication, we filtered
outliers by visually inspecting of the time series data and removed
spurious data points. From over 1,300 measurements, 80 (6%)
measurements contained invalid data and were not included
for further analysis. The invalid data were due errors associated
with typing, omitting of site-ID or sending the measurement to
a wrong code e.g., submitting water level data using the code
for turbidity.

Statistical Analyses
The suspended sediment concentrations were tested for
normality using Q-Q plots and the Shapiro-Wilk test (P < 0.05)
which revealed non-normal distribution of data. Therefore, all
tests used in this study are non-parametric. To test for significant
differences in the suspended sediment concentrations among
different sites, the Mann-Whitney U test was used at P < 0.05.
Spearman’s correlation coefficients were calculated to identify
the strength and direction of significant relationships (P < 0.05)
between SSC concentrations and explanatory variables.

RESULTS AND DISCUSSION

Relationship Between Turbidity and
Suspended Sediment Concentration
To visualize the relationship between suspended sediment
concentrations and the measured turbidity values from both
turbidity tubes and automated stations measurements, the
calibration dataset was pooled to obtain one rating curve
for the turbidity tube and one for the automated stations.
In the view of the potential loss of information through
pooling of the data from the six subcatchments, we further
compared the resulting regression statistics and found no
significant difference between the slopes for each site-specific
calibration (P > 0.1). Pooling data allows to establish one
common calibration which can be used in case turbidity tubes
are used in additional so far not measured subcatchments.
The relationship between turbidity and suspended sediment
concentrations showed a strong linearity (Figure 2). The strong
relationship indicates a high predictability of SSC from turbidity

tube readings and automated stations. Studies conducted to
evaluate the use of turbidity tubes to predict total suspended
solids concentrations in streams in northeast Ohio revealed also a
highly predictive correlation (R2 = 0.896) (Anderson and Davie,
2004). Similarly, Stenfert Kroese et al. (2020a) reported a strong
correlation between turbidity readings (FTU) and suspended
sediment concentrations for the automated stations used in this
study (R2 = 0.98).

Validation of Citizen Science Data
A comparison between citizen scientist collected data and
measurements obtained with automated stations at KUR and
CMT showed high correlation of 0.95 and 0.94, with a root
mean square error (RMSE) of 40.2 and 33.1mg L−1, respectively
(Figure 3). However, citizen scientists measurements at KUR
tended to deviate from the 1:1 slope to a great extent and the
suspended sediment concentration was found to be more likely
to be underestimated at higher concentrations (>50mg L−1,
P < 0.05), a bias observed in other citizen science datasets as well
(Ho et al., 2020). For data comparability and quality between
participants, the relative difference between suspended sediment
data collected with the turbidity tubes by the two most active
participants per site and the data measured by the automated
station was calculated (Figure 4). The results show that the
citizen scientists at KUR underestimated SSC by ∼30% and
generally overestimated low SSC values at CMT, but there was no
significant difference in measurements between the participants
(P > 0.05). Other studies suggest that turbidity tube readings
can over- or underestimate actual turbidity values for particular
locations due to site-specific characteristics such as particle size,
composition of particulate matter, lighting conditions and error
between different observers (Dorea and Simpson, 2011; Rügner
et al., 2013; Scott and Frost, 2017). We found no significant
difference between the citizen scientists’ data and automated
stations data at CMT (P > 0.05), indicating consistency in
suspended sediment concentrations between the two methods.
Scott and Frost (2017) reported a good relationship between
turbidity measurements taken by volunteers using turbidity tubes
and lab measurements of total suspended solids (R2 = 0.68). This
is an indication that measurements taken by citizen scientists
using turbidity tubes can provide useful information on the
concentration of suspended sediments in rivers in the Sondu-
Miriu catchment, as found elsewhere (Anderson and Davie,
2004).

Our results indicate that the lower detection limit for SSC
under field conditions for our turbidity tubes is about 25mg
L−1. Anderson and Davie (2004) reported that an accurate
estimation of SSC in the lower ranges (10–20mg L−1) is more
difficult due to low repeatability owing to the detection limits
of the turbidity tubes. Also, the scale on the turbidity tube,
especially for larger values, is so rough that some detail is
lost at this range. A similar observation was reported by the
Forest Water Watch project in Toronto, Canada (Scott and
Frost, 2017). Additionally, only very few SSC values >200mg
L−1 were recorded by the citizen scientists, thus failing to
capture major sediment export events, a sampling bias frequently
reported with citizen science approaches (Thornhill et al., 2016;
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FIGURE 2 | Relationship between suspended sediment concentrations (SSC) (mg L−1) and turbidity measurements using (A) turbidity tubes (Tu) at the six monitoring

sites and (B) automated station (AS) at two monitoring sites (KUR and CMT) in the Sondu-Miriu river basin, Kenya.

FIGURE 3 | Comparison of the suspended sediment concentration (mg L−1) calculated based on calibrated turbidity measurements collected by citizen scientist and

automated stations between September 2017 and September 2019 for (A) KUR and (B) CMT in the Sondu-Miriu river basin, Kenya. The dashed line represents the

1:1 relationship.

Miguel-Chinchilla et al., 2019). We attribute this to individual
preferences of citizen scientist as high SSCs are likely correlated
with increased water levels, rainfall and “bad weather.” It is very
likely that citizens simply avoid sampling under these conditions.
This could have resulted in the underestimation of SSC from
each of the monitored subcatchment by an unknown proportion
(Ziegler et al., 2014; Dutton et al., 2018).

Rapid developments in technology and rise of low-cost robust
sensors with improved detection limits and resolution could
be suitable for citizen science studies to complement already
existing crowdsourcing efforts (Buytaert et al., 2014; Scott and
Frost, 2017). Recently, an improved quantification of both
turbidity and concentration of suspended particular matter by
use of smartphone applications such as HydroColor has been
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FIGURE 4 | Relative difference between citizen scientists measured SSC (mg L−1) using turbidity tubes and the SSC (mg L−1) obtained from turbidity data recorded

by an in situ UV-Vis sensor at the corresponding automated station for (A) CMT and (B) KUR. The gray boxplots show the relative difference for all participants at a

given site. Participant number corresponds to the participant ID shown in Figure 6.

successfully tested in Australia and USA tomonitor inland waters
(Leeuw and Boss, 2018; Malthus et al., 2020) and in Myanmar
to monitor Ayeyarwady river (Thatoe Nwe Win et al., 2019).
Other studies have demonstrated working methods using digital
cameras in Wisconsin for water quality mapping (Compas and
Wade, 2018).

Participation Rate
Sustained engagement and generating the required participation
levels in citizen science are of primary importance in contributing
to data quality and should therefore be carefully considered
(Scott and Frost, 2017; Moor et al., 2019; Serret et al., 2019). To
evaluate this, we used data on the participation of the citizen
scientists from the six monitoring sites. We noticed that the
number of participants, of which 19 participated in 1-day training
meetings held at the monitoring sites, increased to 37 during
the project. Unlike the original 19 participants, these 18 “new”
citizen scientists were not followed up intensively during the
project. We assume that some of the 18 “new” participants
borrowed the tubes and received training from the original
participants during their weekly sampling and contributed to
the dataset out of intrinsic motivation. This is consistent with
other research that reported on citizen science behaviors as a
potential avenue for recruiting new members to the program
and diffusion of knowledge, for example the Wabash Blitz
volunteer experience (Church et al., 2019). Alternatively, the
original participants changed their cellphone numbers during the
monitoring period and were consequently considered as “new”
participants. However, since none of the “new” participants
showed a sudden and strong activity in the middle or toward the
end of the study period, it is unlikely that such cases occurred
as the trained participants consistently contributed most of
the data each month. Additionally, there are those participants

who contributed data occasionally during the training, and/or
monthly sensitization meetings.

The sampling effort and data contribution varied over
time with noticeable spikes (Sauermann and Franzoni, 2015).
Figure 5A reveals that the highest level of participation was
recorded during early stages of the project with October 2017
having the highest number of measurements (n = 101) followed
by a decline in the subsequent months. This could be attributed
to the initial novelty when the project activity started and the
motivation of the community to learn a new skill (Raddick
et al., 2009; Rotman et al., 2012). The monthly spikes can be
explained by subsequent growing interest among participants
as they became more experienced in the monitoring, new
participants who joined later in the project phase or by monthly
sensitization meetings undertaken by the project to encourage
engagement. All of the participants at sites KUR, CMT and
KIP that contributed large numbers of readings lived within
1 km distance from the monitoring station and visited the river
more often as they depend on river water for domestic use
(Table 3). In contrast, reduced motivation over time due to
limited ease of access and proximity to monitoring stations
could be associated to the low participation rate thus a smaller
amount of data at sites SNU, and YRH where 4 out of 6
of the participants lived more than 2 km away. Besides, one
of the participants at SNU mentioned that monitoring water
level was easy as the staff gauges alongside signboards were
installed at designated gauging station, whereas the water quality
measurements required bringing own equipment to the site. A
reducing interest in long-term citizen science based research is a
typical pattern found in other projects as well. Volunteer Lake
Monitors in Minnesota and Alabama Water Watch programs
reported an overall increase in number of dropouts after the
1–3 years of the monitoring program (Klang and Heiskary,
2000; Deutsch and Ruiz-Córdova, 2015). Notwithstanding, the
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FIGURE 5 | Participation of citizen scientists in data collection and cumulative for the monitoring period from September 2017 to September 2019 in the Sondu basin,

Kenya: (A) total number of measurements per month (B) Lorenz curve representing inequality in data collection by all participants.

TABLE 3 | Demographics of the 19 trained citizen scientists in relation to the level of engagement based on the total number of valid measurements contributed over the

entire monitoring period between September 2017 to September 2019 (Very active: >100, active: 50–100, moderately active: 20–50, less active: <20).

Variable Category Level of engagement

Very active Active Moderately active Less active

Gender Male 10.5% (n = 2) 21.1% (n = 4) 26.3% (n = 5) 21.1% (n = 4)

Female 10.5% (n = 2) 5.2% (n = 1) 5.2% (n = 1)

Age 24 or younger 10.5% (n = 2)

25–34 15.8% (n = 3) 10.5% (n = 2) 5.2% (n = 1) 10.5% (n = 2)

35–44 5.2% (n = 1) 5.2% (n = 1)

45–54 5.2% (n = 1) 10.5% (n = 2) 5.2% (n = 1)

55 or older 5.2% (n = 1) 5.2% (n = 1) 5.2% (n = 1)

Education level Primary school 15.8% (n = 3) 5.2% (n = 1) 5.2% (n = 1) 5.2% (n = 1)

Secondary school 5.2% (n = 1) 10.5% (n =2) 26.3% (n = 5) 10.5% (n = 2)

College education 5.2% (n = 1) 10.5 % (n = 2)

Distance to station <0.5 km 10.5% (n = 2) 10.5% (n =2) 1 0.5% (n = 2) 10.5% (n = 2)

0.5–1 km 10.5% (n = 2) 5.2% (n = 1) 10.5% (n = 2) 10.5% (n = 2)

1–2 km 5.2% (n = 1)

>2 km 5.2% (n = 1) 5.2% (n = 1) 5.2% (n = 1)

last phase of the project was characterized by a more stable
monitoring effort as compared to other phases with an average
rate data contribution of 25 measurements per month over
all the sites.

As noted by Wilkinson (2008), participation follows a power
law of distribution in which a small number of very active
participants account for most of the activity. This is reflected
in the Gini coefficient of 0.66 (Figure 5B). While still being
relatively high and indicating the dominance of a few participants
providing most of the data, our Gini coefficient is somewhat
lower than those reported for other projects such as the
Toronto Forest Water Watch project and Zooinverse with
Gini coefficients of 0.84 and 0.85, respectively (Sauermann and
Franzoni, 2015; Scott and Frost, 2017). Analyzing individual-
level total data contribution, we find that the very active
participants (11%, n = 4) and active participants (11%, n = 4)

contributed 72% of the data. The remaining data were collected
by moderately active members (19%, n = 7), and less active
participants (59%, n = 22), most of whom we presume belong
to the group of new participants. Of all the participants, four
(11%) contributed data consistently for the entire monitoring
period (25 months), indicating a long term-commitment from
participants residing near to the monitoring locations. 35%
(n= 13) of the participants dropped out of the program after 1–2
months of monitoring, while 30% of the participants monitored
for a period of 11–25 months (Figure 6). The greatest proportion
of participants with the highest level of engagement were between
25 and 34 years with primary education, even though most of
the citizen scientists had secondary school education (Table 3).
The findings resonates with other studies that observed a similar
pattern in which younger (<35 years) and lower educated
people showed active participation and long-term commitment
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FIGURE 6 | Temporal distribution of data collected by all participants at all the

monitoring sites for the monitoring period from September 2017 to September

2019. Level of engagement is based on the number of measurements (n)

contributed per month.

in citizen science projects (Brouwer and Hessels, 2019; Weeser
et al., 2021). Nevertheless, even occasional participants can
successfully contribute to the monitoring program as most
contributions in citizen science are attained by returning
participation (Sauermann and Franzoni, 2015).

Method of Engagement
In addition to generating relevant research data and increasing
scientific knowledge, designing, and building a citizen science
project requires the consideration of social aspects to sustain
user motivation and achieve project goals (Shirk et al., 2012;
Domroese and Johnson, 2017). The decline in participation
rate and drop out of citizen scientists in the study could have
been contributed by the cost of 0.01 USD involved in the
transmission of data (Weeser et al., 2021). Additionally, a delay
in the reimbursement of credit after submission of data, as this
was done at the end of the month, could have demotivated
participants thus resulting in declining participation (Wald
et al., 2016). Other studies have identified financial incentives
as a significant barrier for participation in developing countries
where citizen scientists expect to derive income from their
engagement (Hobbs and White, 2012; Buytaert et al., 2014).
Another challenge in engaging long-term participation could be
attributed to the disconnect between the projects objectives and
needs of the community as well as interests of the participating

group (Wald et al., 2016; Church et al., 2019). According to
Golumbic et al. (2020), identifying and addressing a community
need can ease the challenging process of participant retention and
support sustained engagement.

To minimize barriers for participation we kept the method of
sending data as simple as possible. As mobile phone coverage and
usage become a more established method of communication in
East Africa (Krell et al., 2020), we chose the text message service
since it is easy to use, user-friendly, stable, and inexpensive
(Weeser et al., 2018). Delivery of feedback is a fundamental
element of a successful citizen science program (Brouwer et al.,
2018). In this study we incorporated an automated feedback built
into the central server to provide an immediate feedback to the
citizen scientists and appreciation message of “Thank you” based
on the participant’s measurements. Such an engagement strategy
has a positive influence that could keep the citizen scientists
motivated as it acknowlegdes their contribution and indicates
the level of activity (Lowry and Fienen, 2013; Weeser et al.,
2018). Additionally, two meetings at two sites (KUR and SNU)
were organized to communicate preliminary results to the citizen
scientists and to other local community members. This provided
a platform for interactive feedback between the researchers,
citizen scientists and community members after which some
participants would be motivated and encouraged to continue
sending data. Majority of the volunteers who participated in
the water level monitoring program in the same catchment
reported that such meetings were powerful means to reach out
to the community and engage motivated volunteers (Weeser
et al., 2021). Furthermore, visualization and communication of
results through meetings or other virtual platforms such as web-
based technologies could incentivise citizen scientists for further
engagement as they can directly gain from participation (Buytaert
et al., 2014; Golumbic et al., 2020).

Spatial and Temporal Trends of Suspended
Sediment Concentrations
Suspended sediment concentrations in the Sondu-Miriu river
basin ranged from 25 to 496mg L−1 with an average of 75
± 56mg L−1. The data revealed significant differences among
sites (P < 0.05). The suspended sediment concentrations were
significantly higher at SNU than at all other sites (109 ±

94mg L−1) while KGT had the lowest SSC (50 ± 25mg L−1),
(P < 0.05) (Figure 7). The proportion of smallholder agriculture
(r = 0.11) and catchment area (r = 0.17) were positively but
weakly correlated with SSC concentrations (P < 0.05). There
is a large body of literature that shows a tight relationship
between land use and erosion rates. Particularly, agriculture is
associated with increased erosion rate due to arable practices,
loss of soil structure and reduced forest cover (Ou et al., 2016;
Poudel, 2016; Tanaka et al., 2016), that limit infiltration rates and
soil hydraulic conductivity properties in the catchment (Nadal-
Romero et al., 2018; Owuor et al., 2018). Earlier studies in the
neighboring Mara river basin found that unregulated livestock
grazing and agricultural land conversion may have increased
erosion and contributed to the higher than expected sediment
yields from the catchment (Dutton et al., 2018). Stenfert Kroese
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FIGURE 7 | Variation in suspended sediment concentrations across the

monitoring sites for the sampling period September 2017 to September 2019.

The lower and upper lines of the boxplots correspond to the 1st and 3rd

quantile (Q1 and Q3 ), respectively, while the solid horizontal line inside the box

represents the median value (Q2). The lower and upper whiskers show the

minimum and maximum values within 1.5 times the interquartile range, while

the circle markers represent extreme values outside of that range. Significant

differences among sites are indicated with different letters (P < 0.05).

et al. (2020a) observed that agriculture and unpaved tracks,
which are pathways for people and livestock to the streams, in
a smallholder catchment in the Sondu-Miriu river basin could
be another driving force for the total sediment load into rivers,
due to more overland flow. The presence of intact riparian
zones, characterized by mixed dense indigenous vegetation, and
commercial tea plantation and forest plantation practices around
KGT may explain the low suspended sediment concentrations.
In contrast, the longitudinal quality of the riparian zone at SNU
is degraded with limited ground cover and disturbed banks due
to cultivation of crops and plantation of woodlots with exotic
tree species. Forests and riparian buffer zones can act as a filter,
controlling and decreasing the sediment load by surface runoff
(Mello et al., 2018). Similar effects were reported in previous
studies that found forested watersheds to have lower suspended
sediment concentrations as compared to agricultural landscapes
(Tu, 2013; Zhang et al., 2017; Mello et al., 2018; Stenfert Kroese
et al., 2020a). Contrasting the effect of land use, we have no
clear explanation for the positive correlation with catchment
size. Even though increasing catchment area is correlated with
larger suspended sediment loads (Göransson et al., 2013; López-
Tarazón and Estrany, 2017), we would have expected higher SSC
with smaller catchment size, due to higher stream velocities, as
well as larger variability and extremes of discharge.

Visual assessment of the hydrological time series data shows
seasonal variability in both suspended sediment concentration
and water level (Figure 8). YRH was omitted from the analysis
as it had a short time series because the installation of water
level gauge and monitoring of the water level started later in
March 2018. The time series of citizen science generated water
level and SSC data at sites KUR and CMT show similar trends

with the data from the automated station in relation to high
and low flow conditions (Figures 8A,C). Nevertheless, the citizen
scientists did notmanage to capture the same degree of variability
in SSC concentrations, especially during the rainy season. Peak
SSC concentrations were reached in early to mid-rainy season
(in the months of April-July for long rains and September to
October for short rains), in some instances prior to peak flow,
and decreased in the transition from rainy to dry season (in
the months of December-March). The higher concentrations of
suspended sediments during the rainy season and the lower
concentrations in the dry season in this study are consistent
with other rivers studied in the Mau Forest Complex (Dutton
et al., 2018; Stenfert Kroese et al., 2020a). Also notable are the
considerable high SSC even in times when flows were consistently
lower in March and May 2019 at site CMT and KIP. This
could be due to the time lapse between the rains and their
respective effect on the concentration and water level (Göransson
et al., 2013). Other studies have reported similar results showing
that the SSC did not necessarily change with discharge values
which is an indication that other factors besides rainfall such
as natural and anthropogenic disturbances control the SSC in
small catchments (Ouellet-Proulx et al., 2016; Rodríguez-Blanco
et al., 2018). Stenfert Kroese et al. (2020a), in a study in the same
catchment, reported that the impulse response between the peaks
of discharge and sediment concentration was in general longer
compared to the rainfall peak.

Overall, citizen science project in Kenya indicate a promising
new approach for recording water quality data in a remote
tropical environment. The study also reveals that, when
appropriately used, turbidity tubes can be an effective and
inexpensive monitoring tool to estimate relative sediment
concentrations from different catchments. The total cost for
setting up and operating the entire citizen science based network
for 1 year cost ∼$10,000 (including cost for the purchasing of
sampling materials, meetings and on-site visits, and maintenance
of the data server). In contrast, setting up an automated station
at one site cost ∼$50,000, which is much more expensive as
compared to operating a citizen-science approach. Furthermore,
extra costs incur annually for security and regular maintenance
of automated stations, despite of malfunctioning of sophisticated
analytical instruments due to harsh environmental conditions in
tropical ecosystems.

CONCLUSION

This study evaluated the potential of citizen science to monitor
suspended sediment concentrations in a remote tropical river
basin using turbidity measured with turbidity tubes as a proxy.
The citizen science generated data showed a good relationship
with the automated measurements of suspended sediment
concentrations, which reveals that turbidity tubes can be an
effective and inexpensive tool to estimate relative differences in
suspended sediment concentrations between catchments with
contrasting conditions. This is at least the case under low
to moderate water levels. Limitations such as sampling biases
attributed to underestimation and the precision of measurements
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FIGURE 8 | Time series of suspended sediment concentration and observed water level transmitted by citizen scientists at five sites and measured by automated

stations at sites KUR and CMT in the Sondu-Miriu river basin over the monitoring period between September 2017 to September 2019: (A) KUR, (B) KGT, (C) CMT,

(D) KIP, (E) SNU.
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due to low repeatability owing to the detection limits of the
turbidity tubes were observed. Notwithstanding, understanding
the error and bias associated with citizen science generated
data in estimating suspended sediments, the data can be used
to provide baseline information on concentrations and support
implementation of catchment and land use best management
practices. Where the purpose of the data is to calculate sediment
yields, further investigation through extensive sampling and
increased spatial and temporal resolution is recommended. The
possibilities of sampling even extreme events might be even
more difficult. On the one hand, because it is difficult to take
representative water samples from the middle of stream where
sediment loads are likely highest and, on the other hand, because
the willingness of the citizens to voluntarily work outside under
extreme weather conditions is low.

Despite the limitations of the data collected with the turbidity
tubes, the data provide good insights of the spatial and temporal
dynamics of sediment concentrations in the Sondu-Miriu river
basin. Our findings highlight the forest cover as a key landscape
feature as low levels of suspended sediment concentrations were
recorded in areas with high forest cover. In contrast, suspended
sediment concentrations in the downstream subcatchment
dominated with agriculture and rangeland was significantly
higher as compared to other subcatchments upstream, indicative
of the impacted state of the river ecosystems in the Sondu-Miriu
river basin.

Prospective future works should consider employing
smartphone applications and robust sensors with improved
detection limits and resolution that are suitable for citizen
science studies in order to increase the precision of concentration
measurements, allow for higher sampling rates and less subjective
readings. We particularly see an advantage of those systems
that will allow contact-free, remote measurements of the river
through taking pictures or video-taping from remote places such
as a bridge.

Finally, long-term participation of citizen scientist remains a
challenge. While the participation and sampling equality rates
were comparable to other citizen science projects, only 11% of the
participants remained engaged for the full monitoring period, an
indication of a high dropout rate. However, both long-term and
short-term monitoring efforts from the participants can increase
the spatial and temporal coverage of the overall dataset. Increased
collaboration between researchers and the citizen scientists
through interactive feedback and communication strategies
could be an incentive to promote sustained participation. This
study emphasizes the need for further empirical research on
the social processes within the context of citizen science in
low-income regions to understand in depth the motivations
and engagement dynamics to minimize barriers and improve
overall participation.

Overall, the results indicate that citizen science is no
panacea but is a promising new cost effective approach that
affords a unique opportunity for monitoring hydrological
and water quality data in a remote tropical montane
rainforest environment.
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