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ABSTRACT
The precision and accuracy of any estimation can inform one whether to use or not to use the estimated values. It is the crux of
the matter to many if not all statisticians. For this to be realized biases of the estimates are normally checked and eliminated or
at least minimized. Even with this in mind getting a model that fits the data well can be a challenge. There are many situations
where parametric estimation is disadvantageous because of the possiblemisspecification of themodel. Under such circumstance,
many researchers normally allow the data to suggest amodel for itself in the technique that has become so popular in recent years
called the nonparametric regression estimation. In this technique the use of kernel estimators is common. This paper explores
the famous Nadaraya–Watson estimator and local linear regression estimator on the boundary bias. A global measure of error
criterion-asymptotic mean integrated square error (AMISE) has been computed from simulated data at the empirical stage to
assess the performance of the two estimators in regression estimation. This study shows that local linear regression estimator
has a sterling performance over the standard Nadaraya–Watson estimator.

© 2020 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

In nonparametric estimation, one aspect that is of importance is the smoothing that makes the interpretation of data possible. Smoothing
in essence, consists of creating an approximating function that attempts to capture only the important patterns, while filtering noise and
ignoring the data structures that are deemed not relevant [1]. This nonparametric technique is applicable both to density and regression
estimation. Other common techniques in nonparametric regression estimation, the focus in this paper, are the spline regression, orthog-
onal series, and kernel regression. This paper explores the kernel regression estimation under the larger framework of the model-based
estimation. One motivating research is due to Dorfman [2] who used the Nadaraya–Watson estimator also known as the local constant
to construct the finite population estimator. Even with this boundary drawback, the estimator of the population total was still better than
the Design-based Horvitz–Thompson estimator [3]. Many researchers in the past have done studies incorporating the Nadaraya–Watson
technique. A few examples include Hall and Presnel [4], Cai [5], and Salha and Ahmed [6] who carried out a study about this. They pro-
posed a weighted Nadaraya–Watson estimator for use in the context of conditional distribution estimation. In their studies they found
out that weighted Nadarya–Watson was an improvement. In particular Cai [5] claimed that it was easier to implement Nadaraya–Watson
estimator than the local linear. Herbert et al. [7] in their study suggested using jackknife technique to improve the Nadaraya–Watson
estimator for finite population total. Generally, it is however known in literature, that the standard Nadaraya–Watson estimator suffers from
the boundary bias and as a result the prime focus in this study is the boundary correction using the local linear estimator.

This paper has been organized as follows: in Section 2, we give a brief review of the literature regarding nonparametric regression and
kernel regression estimation. In Section 3, we derive the bias and the variance of Nadaya–Watson and local linear regression estimators. The
boundary correction shall be shown in this section as well. Empirical analysis has been done in Section 4 using some artificially simulated
datasets. Discussion of results and conclusion is given in Section 5.

2. LITERATURE REVIEW

In this section review of literature on nonparametric regression estimation has been done. Also included in this section is the literature on
kernel regression estimators.
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2.1. Nonparametric Regression Estimation

Nonparametric regression estimation has been carried out by many researchers in many studies. Dorfman [2] did a comparison between
the famous design-based Horvitz–Thompson estimator and the nonparametric regression estimator developed by using Nadaraya–Watson
estimator [8,9]. In his study, he found out that the kernel-based nonparametric regression estimator better reflects the structure of the
data and hence yields greater efficiency. This regression estimator, however, suffered the so-called boundary bias besides facing bandwidth
selection challenges. Breidt and Opsomer [10] did a similar study on nonparametric regression estimation of finite population under two-
stage sampling. Their study also reveals that the nonparametric regression with the application of local polynomial regression technique
dominated the Horvitz–Thompson estimator and improved greatly the Nadaraya–Watson estimator. Breidt et al. [11] in their results also
show that the nonparametric regression estimation is superior to the standard parametric estimators when the model regression function
is incorrectly specified, while being nearly as efficient when the parametric specification is correct.

2.2. AMISE in Kernel Regression Estimators

The key properties that a statistician would be interested to check given an estimator are the variance and the bias. These two can enable
one to measure the amount of accuracy and precision that an estimator has. In fact at an arbitrary fixed point, a basic measure of accuracy
that takes into account both the bias and variance is the mean square error (MSE), Tsybakov [12], Härdle [13], Takezawa [14], and Härdle
et al. [15]. In nonparametric regression estimation, one would be interested in the cumulative amount of bias and the variance over the entire
regression line. This global measure called mean integrated square error (MISE) is obtained by finding the integral value of the variance and
the square of the bias of the estimator over the entire line [16]. Taylors’ expansion is normally used to obtain the asymptotic mean integrated
square error (AMISE). Using differential calculus an optimal bandwidth can be obtained based on this AMISE. Among researchers who
have carried out studies using these measures include Manzoor et al. [17]. Given the asymptotic properties one can deduce the speed of
convergence of the estimators and determine the price to pay in a given option. It is from this literature that in Section 3, this study uses
these measures in the analysis stage to compare the proposed estimator against the standard ones reported.

3. METHODOLOGY

This section gives the various techniques that have been used in this study to perform the regression estimation. More specifically the
properties of each of the estimators have been given.

3.1. Properties of the Kernel Regression Estimators

Amodel-based nonparametric model is conventionally of the form

Yi = m (Xi) + ei (1)

where i = 1, 2, … , n
Yi is the variable of interest

Xi is the auxiliary variable

m is an unknown function to be determined using sample data

ei is error term-assumed to be N
(
0, 𝜎2) under the model.

The pairs of (Xi, Yi) is a 2-dimensional bivariate random variables in the sample space.

The idea of nonparametric regression has gained prominence in a couple of decades now. The recent advancement in technology and
computers has enabled researchers to handle the massive computation experienced with this approach. This section gives a brief derivation
of Nadaraya–Watson estimator.

3.2. Review of the Nadaraya–Watson Estimator

Let K(.) denote a kernel function which is also twice continuously differentiable, such that

(a) ∫ K(z)dz = 1 (b) ∫ zK(z)dz = 0 (c) ∫ z2K(z)dz ∶= K2(K)(< ∞) (2)
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Further, let the smoothing weight with a bandwidth h be

wi(x) =
K
( x−Xi

h
)

∑
s
K
( x−Xi

h
) , i = 1, 2, ..., n (3)

Assume a model of the form specified in (1), the Nadaraya–Watson estimator ofm(x) is therefore given by

m̂NW(x) =
n

∑
i=1

wi(x)Yi =

n

∑
i=1

K
( x−Xi

h
)
Yi

∑
s
K
( x−Xi

h
) (4)

Incorporating the Gaussian kernel function the value of ̂y at any point x can be obtained as

̂y = m̂(x) =
n

∑
i=1

wi(x)Yi =

n

∑
i=1

1
√2𝜋

exp
(
− 1

2
( x−Xi

h
)2)Yi

n

∑
i=1

1
√2𝜋

exp
(
− 1

2
( x−Xi

h
)2) (5)

This gives a way of estimating the nonsample values of y given x the auxiliary value. The nonparametric estimator for the finite population
total is thus given by

T̂np =
n

∑
i=1

yi +
N

∑
i=n+1

m̂NW (xi) (6)

The equation in (6) was first suggested by Dorfman [2]. For kernel regression estimator, the estimate of m at point x is obtained using a
weighted function of observations in the h-neighborhood of x. The weight given to each observation in the neighborhood depends on the
choice of kernel function.

For example a uniform kernel functionwould assign the sameweights to all the points within its windowwhile the bi-weight kernel function
on the other hand, assigns more weight to the points closest to the target and diminishes the weights in those points that are “farthest away”
from the center of the kernel.

Choosing an appropriate kernel and a suitable bandwidth is quite important in nonparametric regression. It is known that the two
(i.e., kernel function and the bandwidth), do not have the same effects—in terms of their contribution in the estimate. Previous studies
reveal that compared to the kernel function which has the least impact while bandwidth selection plays a more crucial part in obtaining
good estimates [18].

3.2.1. Properties of the Nadaraya–Watson estimator

The bias term of a Nadaraya–Watson estimator can be shown to be given by

Bias [m̂NW(x)] = h2K2(K) [12m
″(x) + [f(x)]−1 f ′(x)m′(x)] + o

(
h2
)

(7)

where f (x) is the marginal density function of the denominator in (4) and K2(K) is given in Equation (2).

The variance term can be shown to be

Var [m̂NW(x)] = R(K)𝜎2

nhf(x)
+ o

(
1
nh

)
(8)

where R(K) is the roughness of the kernel, i.e., R(K) = ∫
∞

−∞
K(z)2dz and 𝜎2 is the conditional variance given by E

(
e2i |Xi

)
. The MSE term

may therefore be obtained as

MSE [m̂NW(x)] = R(K)𝜎2

nhf(x)
+ 1

4
h4K2

2(K) [m″(x) + 2 f
′(x)m′(x)
f(x) ]

2

+ o
(
h4
)
+ o

(
1
nh

)
(9)
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and the AMISE is thus given by

AMISE (m̂NW(x)) = ∫ R(K)𝜎2

nhf(x) dx +
1
4
h4K2

2(K) ∫ [m″(x) + 2 f
′(x)m′(x)
f(x) ]

2

dx (10)

The proofs of these terms have not been done in this paper. Readers whomay be interested can refer to [19]. A critical look at these properties
shows that the bandwidth h is directly proportional to the bias while being inversely proportional to the variance. This implies that larger a
value of h increases the size of the bias but at the same time reduces the variance. The opposite is true for small value of the bandwidth. See
Figure 1 for an insight of this. From this fact, it is obvious that an optimal bandwidth that minimizes the AMISEmeasurement criterion is
required.

3.2.2. Optimal bandwidth of the Nadaraya–Watson estimator

The bandwidth that optimizes Nadaraya–Watson estimator can be found by minimizing the AMISE function given in (10) with respect to
h. The first derivative is given by

dAMISE (m̂(x))
dh = d

dh

(
∫ R(K)𝜎2

nhf(x) dx +
1
4
h4K2

2(K) ∫ [m″(x) + 2 f
′(x)m′(x)
f(x) ]

2
dx
)

= h3K2
2(K) ∫

∞

−∞
[m″(x) + 2 f

′(x)m′(x)
f(x) ]

2
dx − R(K)𝜎2

nh2f(x)

Equating this to zero and solving for h yields an optimal bandwidth, hoptNW , for a given p.d.f and kernel:

hoptNW =
⎛⎜⎜⎜⎝

R(K)𝜍2

nf(x)K2
2(K) ∫

∞

−∞
[m″(x) + 2 f ′(x)m′(x)

f(x) ]
2
dx

⎞⎟⎟⎟⎠
1
5

(11)

3.3. Review of the Local Polynomial Regression Estimator

Let (X1, Y1), (X2, Y2), …, (Xn, Yn) be a random sample of a bivariate data taken from a finite population. From the model in (1), to estimate
the unknown functionm(Xi), the procedure below follows:

m(x) = E [Y/X = x]

Figure 1 Impact of the bandwidth on variance and the bias.
Pdf_Folio:463
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This can be approximated using Taylor’s series as

m
(
xj
)
= m(x) +m′(x)

(
xj − x

)
+

m″(x)
(
xj − x

)2
2

+ ... +
mp(x)

(
xj − x

)p
p! (12)

for xj in the neighborhood of x. In this neighborhood the regression type is that of local polynomial fit. This fit, in some texts for example
László et al. [20], is also known as local polynomial kernel estimate. To achieve this, a kernel function has to be incorporated so that the
kernel weights in the minimization problem are given by

min
𝛽

n

∑
i=1

{Yi − 𝛽0 − 𝛽1 (Xi − x) − 𝛽2 (Xi − x)2 − ... − 𝛽p (Xi − x)p}2 K
(
Xi − x

h

)
(13)

where

𝛽 =
(
𝛽0, 𝛽1, 𝛽2, … 𝛽p

)T
This gives the weighted LSE having the weights: K

(Xi−x
h

)
So that letting

X =
⎛⎜⎜⎜⎝
1 (X1 − x) (X1 − x)2 ... (X1 − x)p
1 (X2 − x) (X2 − x)2 ... (X2 − x)p
⋮ ⋮ ⋮ ⋮⋯ ⋮
1 (Xn − x) (Xn − x)2 ... (Xn − x)p

⎞⎟⎟⎟⎠ , Y =
⎛⎜⎜⎜⎝
Y1
Y2
⋮
Yn

⎞⎟⎟⎟⎠ and

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

K
(
X1 − x

h

)
0 ⋯ 0

0 K
(
X2 − x

h

)
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ K
(
Xn − x

h

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
enables the computation of ̂𝛽 to minimize (13) using the usual weighted LSE.

i.e.,

̂𝛽(x) =
(
XTWX

)−1
XTWY (14)

The degree of the local polynomial regression has an implication on the estimate in terms of how it addresses the boundary and the interior
biases as well as the effect on variance. The polynomials of degree more than three have been known to reduce the bias muchmore the local
linear at the interior but at the cost of high variance. The same local polynomials however, are poorer at the boundary. It is also known that
the odd order degree dominate those of even order. From there researches it can be concluded that it suffices to keep the order of the local
polynomial regression low and concentrate on adjusting the bandwidth. Härdle et al. [15] and Avery [21] among others can be referred
for this. Because of this fact, this study confines itself to the local linear regression estimation which is achieved from the local polynomial
regression of degree one. It is of interest to note thatNadaraya–Watson estimator is a special case of the local polynomial regression estimator
with the degree kept at zero.

3.3.1. The properties of local linear regression estimator

In this paper the properties of this estimator have been stated. More detailed theoretical derivations can be found in [15].

The bias of local linear regression is given by

Bias [m̂LL(x)|X1,X2, ...,Xn] = 1
2
m″(x)h2K2(K) + o

(
h2
)

(15)

While the conditional variance is given by

Var [m̂LL(x)|X1,X2, ...,Xn] =
R(K)𝜎2

nhf(x)
+ o

(
1
nh

)
(16)
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Thus theMSE of [m̂LL(x)] is

MSE [m̂LL(x)] =
R(K)𝜎2

nhf(x)
+ 1

4
(
m″(x)

)2 h4K2
2(K) + o

(
h4
)
+ o

(
1
nh

)
(17)

Integrating theMSE in (17) gives us theMISE of the local linear estimator. This is given by

MISE (m̂LL(x)) = ∫ R(K)𝜎2

nhf(x) dx +
1
4
h4K2

2(K) ∫
(
m″(x)

)2 dx + o
(

1
nh + h4

)
(18)

Hence the asymptotic MISE is

AMISE (m̂LL(x)) = ∫ R(K)𝜎2

nhf(x) dx +
1
4
h4K2

2(K) ∫
(
m″(x)

)2 dx (19)

3.3.2. The optimal bandwidth for the local linear regression estimator

As it was done with the local constant the optimal bandwidth for the local linear estimator can be obtained by minimizing the expression
in (19) to have

dAMISE (m̂LL(x))
dh = d

dh

(
∫ R(K)𝜎2

nhf(x) dx +
1
4
h4K2

2(K) ∫ (m″(x))2dx
)

= h3K2
2(K) ∫

∞

−∞
(m″(x))2dx − R(K)𝜎2

nh2f(x)

Solving this for the bandwidth, h;

⇒ hoptLL =
⎛⎜⎜⎜⎝

R(K)𝜍2

nf(x)K2
2(K) ∫ m″(x)dx

⎞⎟⎟⎟⎠
1
5

(20)

The application of these optimal bandwidths can generally be challenging because there are a number of unknown functions that require
estimation first such as the marginal density f(x) and the derivatives m′(x), m″(x). From the researches that have been done bandwidth
selectors can be categorized into two types the “plug-in” methods recommended by [18] as well as [22] and the cross-validation methods
recommended by Loader [23]. Since our focus in this paper is not really on the bandwidth our readers can refer to the findings of Ruppert
et al. [24] and the mentioned researchers for the details.

4. EMPIRICAL STUDY

Data simulation was done using themodel in (1) so thatm (Xi) = 10–X3 whereX ∼ U(1, 2) and e ∼ N (0, 0.5). This was aimed at portraying
how the two estimators perform in regression estimation and more specifically at the boundary. The resulting graphs that show how the
estimators perform with respect to change in bandwidth have been given in Figures 2 and 3, respectively. The Nadaraya–Watson estimator
has been graphed together with the local polynomial regression estimators of varying degrees but with special focus at the interior and the
boundaries have been given in Figure 4. The last figures, i.e., Figures 5 and 6, give special graphs of the two estimators, i.e., the Nadaraya–
Watson and the local linear estimators have been compared. In particular Figure 5 is given as the sample size increases while Figure 6 shows
graphs for specific datasets in r. The area of focus is on the correction of the boundary bias. To compute the respective AMISEs, simulation
was done using themodels tabulated in Table 1. The other tables show these computations as the sample size changes. Further to this, inbuilt
datasets of eruptions and waiting in “faithful” geysers, boiling points against barometric pressure in “forbes” and Petal lengths against petal
widths in “iris” flowers, have also been used in a similar computation. The results are presented in Table 2.

5. CONCLUSION AND RECOMMENDATION

From the results of the simulated data presented in the respective figures, it is clear that the local linear estimator does not induce the
boundary bias into its estimate as is the case with the Nadaraya–Watson estimator. In addition it was revealed from Figure 4 that while the
increment of the degree of the local polynomial seems to be reducing the interior bias, the unfortunate result is that it came with a cost
of higher variance. They also do not perform adequately at the boundary as the local linear does. The superior performance of the local
linear estimator also manifested itself in the figures obtained using various inbuilt datasets in r (see Table 2). Local linear estimator can
therefore be recommended for removal of the boundary bias. If however the problem is the interior bias then with proper adjustment of thePdf_Folio:465



466 L. R. Cheruiyot / Journal of Statistical Theory and Applications 19(3) 460–471

Figure 2 Nadaraya–Watson estimator with varying bandwidths.

Figure 3 Local linear estimator with varying bandwidths.

Table 1 Models used in simulation.

Model Equation

1: Cubic Y = 10− X3 + e ∼ N (0, 0.5) where X ∼ U (1, 2)
2: Bump Y = (1+ 2 (X− 0.5))+

(
exp

(
−200 (X− 0.5)2

))
+ e ∼ N (0, 0.5) where X ∼ U (1, 2)

3: Quadratic Y = 1+ 2 (X− 0.5)2 + e ∼ N(0, 0.5) where X ∼ U (1, 2)
4: Linear Y = 1+ 2 (X− 0.5)+ e ∼ N(0, 0.05), where X ∼ U (1, 2)
5: Exponential Y = exp (−4X)+ e ∼ N (0, 0.0015), where X ∼ U (1, 2)

bandwidth may suffice in some cases. The gains made by moving to higher order degree are insignificant. It is also clear that for both cases
the bandwidth play a significant role as a smoothing parameter and thus proper selection should be born in mind during estimation. These
facts were supported by the overall smaller values of AMISEs for the local linear estimator that proved to be superior in all aspects to the
Nadaraya–Watson estimator as seen from the results given in Tables 2–7.

Pdf_Folio:466
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Figure 4 Boundary and interior bias-variance trade-off in regression estimates. Graphs (a)-(c) are specific portions of the graph
given in part (d).

Table 2 Asymptotic mean integrated square error (AMISE) for the standard Nadaraya–Watson (NW) kernel estimator and local linear (LL) regression
estimator computed for various selected datasets.

Dataset Nature of Boundary Bias Estimator AMISE h AMISE

Faithful dataset No boundary correction NW 0.00027040 7.781472
Boundary corrected LL 0.00024807 7.375393

Forbes dataset No boundary correction NW 0.00075248 2.278702
Boundary corrected LL 0.00043041 3.537160

Iris dataset No boundary correction NW 0.01650655 0.093106
Boundary corrected LL 0.00141712 1.083385

Pdf_Folio:467
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Figure 5 Comparing the standard Nadaraya–Watson estimator and the local linear regression techniques with varying sample
sizes and optimal bandwidths.

Table 3 Asymptotic mean integrated square error (AMISE) for the standard Nadaraya–Watson (NW) kernel estimator and local linear (LL) regression
estimator (Model 1-Cubic function).

Sample Size Nature of Boundary Bias Estimator AMISE h AMISE

n = 25 No boundary correction NW 0.001677 1.169522
Boundary corrected LL 0.001348 1.201303

n = 50 No boundary correction NW 0.001721 1.063632
Boundary corrected LL 0.001402 1.206711

n = 100 No boundary correction NW 0.001401 1.211507
Boundary corrected LL 0.001119 1.453101

n = 500 No boundary correction NW 0.001291 1.316334
Boundary corrected LL 0.001218 1.375686

n = 1000 No boundary correction NW 0.001254 1.353020
Boundary corrected LL 0.001200 1.398421

Pdf_Folio:468
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Figure 6 Comparing the standard Nadaraya–Watson estimator and the local linear regression techniques using inbuilt datasets in R.

Table 4 Asymptotic mean integrated square error (AMISE) for the standard Nadaraya–Watson (NW) kernel estimator and local linear (LL) regression
estimator (Model 2-Bump function).

Sample Size Nature of Boundary Bias Estimator AMISE h AMISE

n = 25 No boundary correction NW 0.005367 0.288393
Boundary corrected LL 0.004966 0.309645

n = 50 No boundary correction NW 0.005475 0.305584
Boundary corrected LL 0.004082 0.375665

n = 100 No boundary correction NW 0.005138 0.309597
Boundary corrected LL 0.003956 0.384638

n = 500 No boundary correction NW 0.004921 0.340515
Boundary corrected LL 0.003893 0.394235

n = 1000 No boundary correction NW 0.004774 0.347761
Boundary corrected LL 0.003845 0.399115

Table 5 Asymptotic mean integrated square error (AMISE) for the standard Nadaraya–Watson (NW) kernel estimator and local linear (LL) regression
estimator (Model 3-Quadratic function).

Sample Size Nature of Boundary Bias Estimator AMISE h AMISE

n = 25 No boundary correction NW 0.002797 0.576798
Boundary corrected LL 0.002641 0.609480

n = 50 No boundary correction NW 0.002446 0.685321
Boundary corrected LL 0.002169 0.740991

n = 100 No boundary correction NW 0.002288 0.716167
Boundary corrected LL 0.002135 0.759066

n = 500 No boundary correction NW 0.002085 0.787549
Boundary corrected LL 0.002040 0.799239

n = 1000 No boundary correction NW 0.002057 0.797407
Boundary corrected LL 0.002029 0.804035
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Table 6 Asymptotic mean integrated square error (AMISE) for the standard Nadaraya–Watson (NW) kernel estimator and local linear (LL) regression
estimator (Model 4-Linear function).

Sample Size Nature of Boundary Bias Estimator AMISE h AMISE

n = 25 No boundary correction NW 0.005368 0.2883934
Boundary corrected LL 0.004966 0.3096449

n = 50 No boundary correction NW 0.004253 0.3672427
Boundary corrected LL 0.004097 0.3749881

n = 100 No boundary correction NW 0.004018 0.3782936
Boundary corrected LL 0.003928 0.3845499

n = 500 No boundary correction NW 0.003970 0.3903203
Boundary corrected LL 0.003889 0.3943235

n = 1000 No boundary correction NW 0.003943 0.3958703
Boundary corrected LL 0.003845 0.3990102

Table 7 Asymptotic mean integrated square error (AMISE) for the standard Nadaraya–Watson (NW) kernel estimator and local linear (LL) regression
estimator (Model 5-Exponential function).

Sample Size Nature of Boundary Bias Estimator AMISE h AMISE

n = 25 No boundary correction NW 0.647323 0.0029467
Boundary corrected LL 0.613482 0.0031301

n = 50 No boundary correction NW 0.723391 0.0025802
Boundary corrected LL 0.635071 0.0030013

n = 100 No boundary correction NW 0.749663 0.0027027
Boundary corrected LL 0.697904 0.0029576

n = 500 No boundary correction NW 0.673946 0.0030442
Boundary corrected LL 0.646734 0.0031898

n = 1000 No boundary correction NW 0.699661 0.0030770
Boundary corrected LL 0.648226 0.0031890
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