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ABSTRACT: One of the key parameters in density and regression estimation is the bandwidth. 

This has variously been termed as kernel width or window by various authors. It is a smoothing 

parameter that determines the amount of data that falls within it and therefore the amount of 

information that will be used to do the estimation. Under ideal situations it would be expected that 

there would be a bandwidth selector that does result in estimates with huge biases or variances. 

Unfortunately this is not the case as small bandwidths reduce the bias at the expense of huge 

variance while large ones has a desirable variance but unacceptably high bias. This study explores 

this important parameter, its optimality and influence on density and regression estimation 

techniques. 
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INTRODUCTION 

Density and regression estimation are essential in statistical inferences. Smoothing methods 

provide a powerful methodology for gaining insights into data, Jones et al (1996). This fact attests 

itself also in the works of (Nakarmi, 2016) and (Chen, 2018). Graphs of such estimators vary on 

their wiggliness because of the chosen bandwidth as well as the kernel function under use. This 

may have effect on the interpretation to be made. Bandwidth selection is an area of concern in 

kernel density estimation. These bandwidths vary with the kernel function chosen. An optimal 

bandwidth of one kernel function cannot be regarded as optimal for another function. Because of 

this many researchers have been carrying out studies aimed at determining techniques of obtaining 

bandwidths that minimize Mean Integrated Square Error (MISE) or Asymptotic Mean Integrated 

Square (AMISE) functions. 

This paper has been organized as follows. In section 2, we give a brief review of literature and 

section 3 gives the derivation of the optimal bandwidth as well as highlighting the other 

bandwidths that have been in use. Comparison and discussion of the different bandwidths have 

been done in section 4, while conclusion has been done in section 5.   
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REVIEW OF LITERATURE 

Estimations are considered robust if they are less sensitive to model misspecifications. The 

misspecifications are common with the parametric modeling. To alleviate this problem 

nonparametric estimation comes in handy. This type of estimation has a number of desirable 

characteristics. As detailed in (Hardle, 1994), it provides a versatile method of exploring the 

general relationship between two variables; secondly it enables one to make prediction of 

observations without any reference to a fixed parametric model; thirdly it is a tool for finding 

spurious observations by studying influence of isolated points and lastly it is a flexible method for 

interpolating between adjacent values of the auxiliary variable. Obviously such an approach is 

inevitably compelling to any researcher. Other researchers who have made contribution in the 

popular approach include (Hardle, 2005, Takezawa, 2006 and Tsybakov, 2009). 

Nonparametric estimation can be achieved in a number of ways. These include kernel based 

estimation, splines and wavelets. How to apply each of these is beyond the scope of this paper. For 

those researchers who are interested there is vast literature available. One may see for example 

(Gramacki A., 2018, Ghosh S. 2018 and Blackburn et al, 2014).  The focus of this paper is on the 

effect of one key parameter in density or regression estimation called the bandwidth. It is the 

parameters that play a key role in the roughness or the smoothness of a curve. Heidenreich et al 

(2013) has reviewed three automatic bandwidth selectors in their paper. They found out that simple 

plug-in and cross-validation methods produces bandwidths with a quite stable performance. In the 

following section we derive the optimal bandwidth and compare this with other existing selectors 

in the subsequent sections.   

Bandwidths 

 Optimal bandwidth 

The MISE which brings together the variance and the bias of an estimator is normally used to 

gauge the performance of an estimator.  

Suppose we want to estimate the population total, T, using its non-parametric estimator, npT̂ . Then 

the MISE of this estimator is given by: 

          2ˆˆ TTETMISE npnp     

    

 

 2]ˆ[]ˆ[ˆ TTETETE npnpnp 

    22  ]ˆ[ ]ˆ[ˆ TTEETETE npnpnp 



European Journal of Statistics and Probability 

Vol.8, No.2, pp, 1-13, September 2020  

Published by ECRTD-UK  

                                                                    Print ISSN: 2055-0154(Print), Online ISSN 2055-0162(Online) 

3 

 

                  

                  0ˆˆ 2  npnp TBiasTVar       (1) 

The two components here in equation (1) are the variance and the bias. A good estimator would 

be the one with the least amount of MISE.  This implies small amounts of variance and bias 

respectively. One way of achieving this would be on checking for the parameter that controls the 

two components and adjusting it so that the least MISE is realized. This parameter is bandwidth 

size used in the kernel function. Suppose that our population estimator, npT̂ , is given by: 
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The bias is then given by: 
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Let K(.) denote a kernel function which is also twice continuously differentiable, such that: 

 (a)    )(:)( (c)  0)( (b)     1)( 2

2 KKdzzKzdzzzKdzzK     (4)  

A non-parametric model is conventionally of the form 

iii eXmY  )(         (5) 

where    Yi- is the variable of interest 

              Xi-is the auxiliary variable 

             m-is an unknown function to be determined using sample data 

  TTETETE npnpnp  ]ˆ[.]ˆ[ˆ2
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             ei-is error term-assumed to be N(0, 2 )  

  i=1, 2, …, n 

 MISE should be looked at as a measure that takes MSE into account in a global manner. To 

measure precision globally we integrate the MSE to obtain the MISE. This will give cumulative 

error along the entire line of m(x) when estimated using )(ˆ xm . The integral value of MSE( )(ˆ xm ) 

is given by: 

dxxmMSExmMISE 



 ))(ˆ())(ˆ(        (6) 

It can be shown that this gives the following result.
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where R(K) is the roughness of the kernel. 

The approximate value of this, however, is the AMISE given by: 
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It is easy to see from (7) that AMISE changes as a function of the bandwidth h, i.e small values of 

h makes the first term in (7) become large but at the same time it makes the second term small. 

Conversely, however, as h gets larger, the second term in (7) increases as the first term decreases. 

This, obviously, requires a balance. See Fig. 1 for an insight of this effect. It is therefore necessary 

to obtain an optimal value of h which minimizes AMISE. This, seemingly, would help us to address 

the problem arising as a result of bias-variance trade-off away from the boundary and to some 

extent at the boundary.  
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Fig. 1. The compromise between the bias and the variance relative to the bandwidth size, h. 

We can find the expression for an optimal bandwidth by minimizing (7) with respect to h. The first 

derivative is given by: 
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Equating this to zero and solving for h yields an optimal bandwidth, hopt, for a given p.d.f and 

kernel: 
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When hopt is substituted in (7), we obtain the minimal MISE for the given p.d.f and kernel. With 

some little algebraic manipulation, (7) can be shown to be: 
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It should be noted that hopt in (8) above is influenced by the size of the sample, n, and the kernel K 

through the unknown function 2)(xm  . This poses a challenge and causes the inapplicability of 

expression (8) in practice. We highlight two common ways in which this problem can be tackled- 

the “plug-in” method and the cross validation method. The plug-in method simply involves the 

replacement of the unknown functions in the expression of interest. This is discussed in the next 

section. 

Silverman’s rule of Thumb 

From the expression in (8), the idea is to replace the unknown function given by 2)(xm  by an 

estimate. Silverman's rule of thumb computes this second derivative as if the function were the 

density of the normal distribution, ),( 2N . This gives:  
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The optimal bandwidth would therefore be given by: 
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The standard deviation,  , still unknown, may be estimated by its value, ̂ , from the sample. 

This is given by: 
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Substituting this in (13) results in: 

  5

1

ˆ06.1
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It has been noticed from previous researches that the value of the bandwidth obtained using 

expression (15) is sensitive to outliers. A single outlier may cause too large estimate of σ and hence 

implies a too large bandwidth, (Härdle, 2005). A more robust estimator can be obtained using the 

inter-quartile range calculated as follows. 

 ]25.0[]75.0[ nn XXR           (16) 
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Maintaining the assumption of normality in the true p.d.f  i.e. ),(~ 2NX  and therefore the 

standard normal )1,0(~ N
X

Z
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 , we can then proceed as below: 
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This expression can thus be substituted for ̂  in (15) to give: 
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A ‘better rule-of-thumb’ bandwidth can be obtained by combining the expressions in (15) and (18). 

The relation obtained is: 
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Both expressions in (15) and (19) have been known to work well when the true densities are or are 

near normal. For those distributions that are substantially different from the normal, bandwidths 

obtained this way may not be satisfactory. 

Least Squares Cross Validation Technique 

This selection criterion is attributed to Rudemo (1982) and Bowman (1984). MISE can be 

decomposed as follows: 
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     dxxmdxxmxmdxxmxmMISE 22 )()()(ˆ2)(ˆ)(ˆ  

Since the third term does not depend on h, we can rewrite the expression as follows.  
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   dxxmxmdxxmdxxmxmMISE )()(ˆ2)(ˆ)()(ˆ 22

       (21) 

This means that minimizing MISE is equivalent to minimizing the expression on the right hand 

side. The first term can be calculated directly from the data. This therefore leaves us with the 

second term which depends on the bandwidth, h, and the unknown function m(x). On a closer look 

at the term  dxxmxm )()(ˆ  it can be noted that this is the expected value of )(ˆ Xm  where the 

expectation has been obtained w.r.t. a random variable X . This expected value can be estimated 

by: 
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is the leave-one-out estimator. This is so because the ith observation is not used in the calculation 

of the estimator in expression (23). From (21) we can therefore have the cross validation criterion.  
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But as we said earlier calculation for the integral part from the data can be obtained using the 

relation: 
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where  K*K(.) is the convolution of K. 

Thus (24) become: 
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The value hcv that minimizes this expression (26) is taken as the bandwidth. 

It should be noted that the cross validation technique automatically adapts to the smoothness of 

the function m(x) and does not involve any assumptions of the unknown density, Hardle, (2005, 

p82). It is also asymptotically optimal, Stone, (1984). Even with these advantages this technique 

seems to pay the fairly small biases with bigger variance. The main drawback of cross-validation 

is that the resulting kernel density estimates tend to be highly variable and undersmooths the data, 

Peracchi (2011, p27). 
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Biased Cross Validation Technique 

This technique of selecting the bandwidth was proposed by Scott and Terrell (1987). It tries to 

minimize AMISE. From (7), we have: 
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By substituting this expression into the AMISE function, we obtain the following BCV(h) i.e. 
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The estimate of the bandwidth, BCVĥ , is chosen by minimizing (27). The summary of these 

selectors have been given in table 1. 

Table 1: Summary of bandwidth selectors 

Notations in this paper Notations in R The Bandwidth 

hopt nrd0 The normal rule of thumb 

hrot Nrd Silverman’s rule of thumb 

hSJ SJ Sheather-Jones 

hLSCV Ucv Least Squares /Unbiased cross-validation 

hBCV Bcv Biased cross validation  

 

Varied Bandwidths and effect on the bias and the variance 

In this section we assess the bandwidth effect as a smoothing parameter on estimation. To assess 

the effect of each bandwidth selector is not easy though. This is because there is still another 

parameter at play in kernel based estimation namely the kernel function. To enable as make 

progress in the study, the same kernel function was thereafter used to attempt to portray the bias 

variance trade-off. The graphs were generated using bandwidths that were varied from small ones 

to large ones. To point out this trade-off it will require someone with vast knowledge of the 

theoretical derivations made about the variance and bias.  The following figures (2 - 6) show the 

different default bandwidths for a random sample of size n= 100, as used with Gaussian kernel 

function. Since the eye may occasionally be used to gauge the suitability of the bandwidth, four 

different ones were tried arbitrarily, see figures 7 & 8 for this. In many situations, it is sufficient 
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to subjectively choose the smoothing parameter by looking at the density estimates produced by a 

range of bandwidths. One can start with a large bandwidth, and decrease the amount of smoothing 

until reaching a ”reasonable”density estimate, Zambom and Dias (2012). The sample taken was 

from the faithful dataset within R.  

CONCLUSION 

There are many ways of bandwidth selection. A detailed study by Jones et al, (1996) gave results 

that have been summarized as follows:- Silverman’s, hrot (“Rule of Thumb”) oversmooths too 

often while hBCV has the same tendency and is instable as well. The hLSCV has an unacceptable 

spread and is often in the direction of undersmoothing. Sheather-Jones-solve the equation 

technique, hSJ is a useful compromise between hrot and hLSCV and performs acceptably in harder to 

estimate densities as well.   

As noted earlier larger bandwidths give smoother curves while the opposite is true for smaller ones 

which produce rather wiggly curves- a reality that reinforces the reasons for naming the bandwidth 

as a smoothing /tuning parameter. This effect was also noticeable in the figures whose smoothing 

parameters were taken arbitrarily.  

It is also worth noting that the difference between the selectors is minimal in terms of their effects 

especially when default ones are taken. This can be attributed to the fact the R software adjusts it 

to an optimal value during the application. The effect of a kernel function is very mild hence one 

can choose any. Since the focus was on the bandwidth the Gaussian function was used in this 

study.  

Within the samples taken in our study we can conclude that there was no much variation resulting 

from the change in selectors as seen in the figures produced.       
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Fig. 4 bcv –Default Bandwidth   Fig. 5  nrd0 –Default Bandwidth 

 

Fig. 6 nrd –Default Bandwidth   Fig. 7 Arbitrary bandwidth of 22 

 

Fig. 8  Arbitrary Bandwidths of 2, 1 and 12 
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