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Abstract: The idea of pooling samples into pools as a cost effective method of screening individuals for the presence of a 

disease in a large population is discussed. Group testing was designed to reduce diagnostic cost. Testing population in pools 

also lower misclassification errors in low prevalence population. In this study we violate the assumption of homogeneity and 

perfect tests by investigating estimation problem in the presence of test errors. This is accomplished through Maximum 

Likelihood Estimation (MLE). The purpose of this study is to determine an analytical procedure for bias reduction in 

estimating population prevalence using group testing procedure in presence of tests errors. Specifically, we construct an almost 

unbiased estimator in pool-testing strategy in presence of test errors and compute the modified MLE of the prevalence of the 

population. For single stage procedures, with equal group sizes, we also propose a numerical method for bias correction which 

produces an almost unbiased estimator with errors. The existence of bias has been shown with the help of Taylor's expansion 

series, for group sizes greater than one. The indicator function with errors is used in the development of the model. A modified 

formula for bias correction has been analytically shown to reduce the bias of a group testing model. Also, the Fisher 

information and asymptotic variance has been shown to exist. We use MATLAB software for simulation and verification of the 

model. Then various tables are drawn to illustrate how the modified bias formula behaves for different values of sensitivities 

and specificities. 

Keywords: Group Testing, Maximum Likelihood Estimator, Almost Unbiased Estimator, Bias Adjuster Formula,  

Bias-Corrected Estimates 

 

1. Introduction 

Group testing, also known as pooled samples, occurs when 

units from a population are pooled and tested as a group for the 

presence of a particular attribute, such as a disease, or a defect. 

The problem of group testing is concerned with classifying 

each � given units in a population into two disjoint categories 

which are defectives and non-defectives. The characteristic 

feature is that any number of units � (in a group) can be tested 

simultaneously but the information obtained from a single test 

on � units, without any chance of error, is either negative or 

positive. When the test is negative, it implies that all the k units 

in that group are non-defective and when it is positive it 

implies that at least one of the units in k units is defective, but 

it is not known which ones or how many are defective. The 

problem is to devise a sequential sampling scheme which 

minimizes the expected number of tests required to classify all 

the � units as defective or non-defective. That is, to find p the 

proportions of defective units in the population. The idea is to 

construct � groups of size � of, say, biological samples (e.g. 

blood) from a population of size  �. The population � may be 

from a number of individuals pooled into n groups. Each group 1, 2 … , � is tested by a single test. If the reading is negative, 

the group is dropped from further investigation, otherwise, 

sequential testing is performed on the group. The sequential 

testing procedure provided will enable us construct an almost 

unbiased estimator or propose analytical procedures that 

reduce biasness. 

Group testing where subjects are tested in pools rather than 

individually has a long history of successful applications in 

screening of infectious diseases. Whether the aim is to diagnose 

individuals (classification) or estimate disease prevalence, it is 
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cost effective since the test is done on a group and not 

individuals. Group testing first appeared in the statistical 

literature in the context of blood testing [1] but has since been 

applied in many fields, including transmission of viruses by 

insect vectors [2], genetics [3], plant disease assessment [4] and 

quality control [5]. Pool testing is a two-fold procedure: The first 

procedure being the identification of positive individuals in a 

population cost effectively (see [1]). This involves testing 

batches of items and those that test positive, the constituent 

members are tested for identification of positive ones. There is 

abundant literature on this classification problem. For instance, 

[6] and [7] proposed hierarchical or multistage model based on 

Dorfman idea that involves subdividing positive pools into 

smaller pools with the purpose of reducing cost. They showed 

that some savings can be achieved via multistage models. The 

second procedure is the estimation of prevalence rate as 

championed by [8]. There is also an abundant literature on this 

problem as established by [9] and [10]. Still on estimation 

problem, [11] used the Maximum Likelihood Estimation (MLE) 

to estimate elements of drugs in a composition of elements. In 

multistage problem with the purpose of estimation, [12] 

proposed a multistage estimation model. [10] proposed 

confidence intervals for prevalence rate when pool testing 

procedures are applied. Bayesian inference on population 

prevalence has also been studied (see for instance [9]). Some 

procedures for bias reduction in group testing model without 

errors has been proposed, [13]. 

In the group testing literature, with the objective of 

estimating the prevalence of an attribute of interest, the MLE 

is the dominant procedure. If the group size is  � = 1, the 

MLE has been shown to be unbiased estimator ([12] and 

[14]). Whereas, when the group size is � > 1, the MLE has 

been shown to be biased and this is a drawback in statistical 

inference in pool testing procedure as observed by [8]. A 

more general bias adjustment, which was not specifically 

derived for group testing, was described by [15]. The purpose 

of this study is to determine an analytical procedure for bias 

reduction in estimating population prevalence using group 

testing procedure in presence of test errors. Specifically, we 

construct an almost unbiased estimator in pool-testing 

strategy in presence of test errors and compute the modified 

MLE of the prevalence of the population. For single stage 

procedures, with equal group sizes, we also propose a 

numerical method for bias correction which produces an 

almost unbiased estimator with errors. 

The rest of the paper is organized as follows. In Section 2, 

we give analytic construction of MLE where we discuss the 

MLE in group testing with errors, an almost unbiased 

estimator, the bias adjuster formula and bias-corrected 

estimates of the prevalence of the population. In Section 3 we 

give results and discussions while in Section 4 we give 

conclusion. 

2. Analytic Construction of MLE 

In this section, it is shown that the MLE for group size � = 1 is unbiased but for  � > 1, it is biased. Secondly, ways 

of improving the MLE have been proposed using the Bias 

Adjuster formula. 

2.1. MLE in Group Testing with Errors 

Suppose we have a large population of size  �, the idea is 

to construct n groups from this population. The population � 

may be blood from a number of individuals then pooled into 

n groups. The probability of classifying a group as positive in 

absence of errors is 

� = 1 − 
1 − ���                               (1) 

where � is the probability of an individual being classified as 

positive and k is the size of the pool. When the error element 

is introduced in (1) we obtain 

� = ��1 − 
1 − ���� + 
1 − ��
1 − ���,      (2) 

where  �  and �  denotes sensitivity and specificity of the test 

kits. By sensitivity we mean probability of classifying a 

positive group as positive while specificity is the probability 

of classifying a non-positive group as non-positive. For the 

derivations of (2), see [12] and [14]. Upon using (2) the MLE 

of � can be obtained as; 

�̂ = 1 − � ������
�����
�                             (3) 

For  � = 1, and upon using (3) the MLE of p is unbiased, 

that is,  !
�̂� = �. But for  � > 1, it has been shown to be 

biased. That is for  � > 1, !
�̂� ≠ �  and this is a drawback 

to group testing inference. We therefore construct an 

analytical procedure that can help reduce bias in the 

subsequent sections. 

2.2. Improved MLE to Almost Unbiased Estimator 

In this section we construct a MLE in pool testing with 

errors in inspection such that when � > 1 the proposed �̂ is 

almost unbiased. To achieve this, we require Gart’s formula 

#
�� =  #$
�� + %
�&�'�                  (4) 

with #$
�� = − �2,-,� + ! ,./,�.�
2-
��'  

where  -  is the Fisher information, l is a log likelihood,  #$ 
��  is the Gart’s bias and O is the order of the error, see 

[15]. We notice that the Fisher information, I, has been 

computed in pool testing literature (See, for instance [12] and 

[14]) and provided as; 

- = 0�1
��2�1 31���
�����1
4
��4�                     (5) 

From (5), we have 

,- ,� = ��'
1 − ��'��.
� + � − 1�'
�'
1 − ��' 52� − 2�' − �� − �� + 2���6 

and 

 '78
72 = '0�1
�9����1
��2�1 3:

41
��4�1 52� + 2��� − �� − �� − 2�'6  (6) 
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Detailed derivation of (6) is provided in Appendix A. 

Also 

! ;,./,�.< = ��'
1 − ��'��.�� − 
1 − ���'
�'
1 − ��' 53�� − 3�'� − 3� + 3�'6 

−4��
1 − ����� − 
1 − ��� + 2�
1 − ����� − 
1 − ���  (7) 

Technical derivation of (7) is provided in Appendix B. 

Equations (6) and (7) are vital in the next sections. 

2.3. Bias Adjuster Formula 

With equations (6) and (7) at hand and Formula (4), upon 

substitution we have 

#$
��  = − ?'0�1���
�����1
��2�1 3:
41
��4�1 �2� + 2��� − �� −

�� − 2�'� + 0�1���
�����1
��2�1 3:
41
��4�1 �3�� − 3�'� − 3� +

3�' − 4��
1 − ����� − 
1 − ��� + 2�
1 − ����� −

1 − ����@ ÷ '01�B
��2�B 3B���
�����B

41
��4�1       (8) 

On simplifying equation (8) above we obtain; 

#$
�� = 
����4
��4�
'0�1���
�����1
�3C��31 + %
�&�'�,       (9) 

where  %
�&�'� implies the order of the error. 

The Gart’s Bias-Corrected estimates are given by; 

�̂D = �̂ − #$ 
�̂�                     (10) 

and 

�̂E = �̂ − #$
�̂E�                       (11) 

as suggested by [13]. 

We distinguish these two approaches by describing them 

as ‘Vertical’ or ‘Horizontal’ correction or more briefly as 

‘Gart-V’ and ‘Gart – H’. Gart–V correction has the 

disadvantage of not being able to handle �̂ = 1, owing to a 

zero denominator in #$
��.  Gart– H correction, in contrast, 

does not require �̂ = 1, to be substituted in #$
��, and so an 

estimate can be found. Gart’s method with Vertical correction 

is highly effective in reducing the bias for small p. With 

Horizontal correction, Gart’s method is moderately effective, 

(see [13]). In our discussion in the next section, our main 

focus is on Vertical correction since it is highly effective. 

3. Results and Discussion 

In this section, a sample from a population is taken, split in 

groups and tested for some attribute of interest. The estimates 

of p, the proportions of defective units in the population, 

under MLE, Bias Adjuster Formula and Gart’s Vertical 

Correction  �̂D  are obtained. These estimates are then 

represented empirically by use of tables. 

We considered bias as the main issue in group testing 

problems. We investigated the MLE for single stage 

procedure. The estimates in the case of the ‘all positives’ 

outcome are shown to have a large effect on bias 

calculations. 

We base our discussions on Monte Carlo Simulation for 

Bias and MLE for various group sizes for given sensitivity 

and specificity (see Tables 1, 2, 3 and 4) 

In the tables that follow, we have results for simulated 

MLE for various group sizes with sensitivity and specificity 

of 1.00, 0.99, 0.95 and  0. 90  and prevalence rate of  � =0.01, 0.02, 0.03, … , 0.09. 
The simplest possible group testing procedure is where a 

single stage with equal group sizes is considered. We take a 

population of 200 samples split into 8 groups each of size 25 

samples and tested for the prevalence of some attribute of 

interest. Hence  � = 200, � = 25 and  � = 8. From equation 

(3), the MLE of �  for different values of �  and �  yields 

results as tabulated in Tables 1, 2, 3 and 4. 

Also from equation (9) when  � = � = 100%, it reduces 

to; 

#$
�� = 
����L��
��2� M
'0�1
��2� 3� + %
�&�'�           (3) 

Upon simulating on MATLAB, the MLE for different 

values of sensitivities and specificities, we obtain results 

provided in the following tables: 

Table 1. Estimates of positive groups for � = � = 100%. 

Method 
Estimates for the following numbers of positive groups 
 N� 

0 1 2 3 4 5 6 7 8 

OP!
�̂� 0.000 0.005 0.011 0.019 0.027 0.038 0.054 0.080 1.000 

#$
�̂� 0.00000 0.00032 0.00076 0.00145 0.00229 0.00377 0.00683 0.01554  

Gart V, �̂D = �̂ − #$
�̂� 0.00000 0.00468 0.0102 0.01755 0.02471 0.03423 0.04718 0.06446 1.000 

Table 2. Estimates of positive groups for � = � = 99%. 

Method 
Estimates for the following numbers of positive groups 
 N� 

0 1 2 3 4 5 6 7 8 

OP!
�̂� 0.000 0.005 0.011 0.018 0.027 0.038 0.054 0.082 1.832 

#$
�̂� 0.000025 0.000350 0.000799 0.001414 0.002388 0.003937 0.007200 0.018140 -0.0027 

Gart V, �̂D = �̂ − #$
�̂� 0.00000 0.00465 0.01020 0.01659 0.02460 0.03410 0.04680 0.06390 1.82934 



 American Journal of Theoretical and Applied Statistics 2016; 5(3): 138-145 141 

 

Table 3. Estimates of positive groups for � = � = 95%. 

Method 
Estimates for the following numbers of positive groups 
 N� 

0 1 2 3 4 5 6 7 8 

OP!
�̂� -0.002 0.003 0.010 0.018 0.027 0.040 0.058 0.095 1.890 #$
�̂� 0.00001043 0.00034970 0.00090898 0.00169730 0.00283200 0.0051288 0.01040 0.04290 -0.00105 Gart V, �̂D = �̂ − #$
�̂� -0.00201 0.00265 0.00909 0.01630 0.02417 0.03487 0.04760 0.05210 1.89100 

Table 4. Estimates of Positive groups for � = � = 90%. 

Method 
Estimates for the following numbers of positive groups 
 N� 

0 1 2 3 4 5 6 7 8 OP!
�̂� -0.005 0.001 0.008 0.017 0.027 0.042 0.064 0.129 1.920 #$
�̂� 0.0000184 0.000415 0.00103 0.002040 0.0035844 0.007184 0.01810 0.35729 -0.000113 Gart V, �̂D = �̂ − #$
�̂� -0.00501 0.00058 0.00697 0.01496 0.02342 0.03482 0.04590 -0.2283 1.92011 

 
From the values in the tables above, the MLE of � and the 

Bias Adjuster of � increase with increase in sensitivity and 

specificity in the test kits. When the sensitivity and 

specificity are 95% and 90%, the MLE of �  and the 

correction are negative. This is when there is no positive 

outcome in the group test. It is also seen that the Vertical 

correction decreases with decrease in sensitivity and 

specificity of test kits. On the other hand, when all the groups 

test positive, � = 1 is almost certainly an overestimate of � 

as it is most unusual for every unit in a population to be 

positive. When all the individuals in the group are positive 

the probability is beyond 1 and the outcome is shown to have 

a large effect on bias calculations. The main reason for this 

rare occurrence is the presence of test errors i.e. the 

specificity and sensitivity and not human errors during the 

experiment since they are assumed to have more effect. 

4. Conclusion 

From the tables in Section 3, it is observed that the bias 

has been considerably reduced when � = � =0.90 compared to when  � = � = 1.00, which conforms to 

the conventions of describing a bias of less than about 10% 

as acceptable. It is shown that the Vertical correction is most 

effective in reducing the bias. However, the correction is 

undefined when �̂ =1 owing to a zero in the denominator in 

modified Bias Adjuster. Thus when all groups test positive, in 

this situation, pool testing procedure is not applicable. For 

instance, see [13] who simply stated that ‘if all groups turn 

out to be positive, no sensible estimate of the infection rate 

can be obtained from the data’. The derivative of the log-

likelihood function of the distribution has been shown to 

yield the Fisher information (-) and the asymptotic variance. 

The modified Bias Adjuster Formula for bias correction has 

been shown to reduce the bias. This is evident in Tables 1, 2, 

3 and 4 for different specificity and sensitivity. 

In this study we have considered bias reduction by 

constructing an almost unbiased estimator in a simple group 

testing model. However, there exist complex group testing 

models in literature. For further research, it will be 

interesting to study the bias properties and suggest some 

modification to such models. 

Appendixes 

Appendix A 

In this appendix, we provide detail derivation of equation (6). First, we know that; 

- = ��'
� + � − 1�
1 − ��'��'
�
1 − ��  

On simplifying the above, we get 

- = ��'
� + � − 1�'
1 − ��'��' �1� + 1
1 − ��� 

The first derivative can be obtained as 

,-,� = ��'
� + � − 1�' ,,� ;
1 − ��'��'
�  +  
1 − ��'��'


1 − �� < 

= ��'
� + � − 1�' U;−
2� − 2�
1 − ��'��.� −  
1 − ��'��'�V
�' < + ;−
2� − 2�
1 − ��'��.
1 − �� −  
1 − ��'��'
1 − ��V


1 − ��' <W 
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= ��'
� + � − 1�' ?X�
'��'�
��2�1 3:
4  −  
��2�1 314,

41 Y + X�
'��'�
��2�1 3:

��4�  −  
��2�1 31
��4�Z


��4�1 Y@     (A1) 

Substituting for 

�V = �
1 − ������� − 
1 − ��� [�\ 
1 − ��V = �
1 − ������−� + 
1 − ��� 
In the above, we get 

78
72 = ��'
� + � − 1�' ?X�
'��'�
��2�1 3:

4  −  
��2�1 31�
��2� 3����
�����
41 Y + X�
'��'�
��2�1 3:


��4�  −  
��2�1 31�
��2� 3����9
�����

��4�1 Y@     (A2) 

On simplifying, yields 

,-,� = ��'
� + � − 1�' ]− 
2� − 2�
1 − ��'��. �1� + 11 − �� −  �
1 − ��.��.�� − 
� − 1�� � 1�' − 1
1 − ��'�^ 

= ��'
� + � − 1�' _−
2� − 2�
1 − ��'��. � 1�
1 − ���  −  �
1 − ��.��.�� − 
1 − ��� ;
1 − ��' − �'
�'
1 − ��' <` 

= ��'
� + � − 1�' ?−
2� − 2�
1 − ��'��. 4
��4�
41
��4�1 −  �
1 − ��.��.�� − 
1 − ��� X��'4941�41

41
��4�1 Y@                  (A3) 

Factoring out  �
41
��4�1  and 
1 − a�'��., we get 

,-,� = ��'
1 − ��'��.
� + � − 1�'
�'
1 − ��' 5−
2� − 2��
1 − �� − �
1 − ���
1 − 2���� − 
1 − ���6 

= 0�1
��2�1 3:
�9����1
41
��4�1 5
2 − 2��
� − �'� − 
� − 2���
1 − ����� − 
1 − ���6�                                  (A4) 

Which simplifies to 

78
72 = 0�1
��2�1 3:
�9����1

41
��4�1 5
2 − 2��
� − �'� − 
1 − ����� − 
1 − ���
� − 2���6      (A5) 

But we know that � =  � − 
1 − ����� − 
1 − ��� or � − � = −
1 − ����� − 
1 − ��� 
Hence; 

,-,� = ��'
1 − ��'��.
� + � − 1�'
�'
1 − ��' 52� − 2�' − 2�� + 2��' + 
� − ��
� − 2���6 

= 0�1
��2�1 3:
�9����1
41
��4�1 52� − 2�' − 2�� + 2��' + �� − 2�'� − �� + 2���6                            (A6) 

On simplifying, we get; 

78
72 = 0�1
��2�1 3:
�9����1

41
��4�1 52� − 2�' − �� − �� + 2���6                              (A7) 

Therefore; 

'78
72 = '0�1
�9����1
��2�1 3:

41
��4�1 52� + 2��� − �� − �� − 2�'6                            (A8) 

Appendix B 

Detail derivation of equation (7) is accomplished in this appendix. Upon taking natural logs of l (p/x), we have 

/
�� = log e�fg + flog� + 
� − f� log
1 − �� 

On finding the derivative with respect to �, we have; 

, /
��,� = Xf�Y �V + �
� − f�
1 − ��� 
1 − ��V 
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The second derivative becomes; 

71h
2�
721 = f X4Z

4 YV + 
� − f� X��4Z
��4  YV = f 44ZZ�4Z4Z

41 + 
� − f� X
��4�
��4�ZZ�
��4�Z
��4�Z

��4�1 Y                                 (B1) 

Upon simplification, we have: 

71h
2�
721 = f X4ZZ

4 − 4Z4Z
41  Y + 
� − f� X
��4�ZZ


��4�  – 
��4�Z
��4�Z

��4�1  Y = f X4ZZ

4  Y – f X4Z4Z
41  Y + 
� − f� X
��4�ZZ


��4�  Y – 
� − f� X
��4�Z
��4�Z

��4�1  Y   (B2) 

The third derivative is given by; 

7:h
2�
72: = f X4ZZ

4 YV − f X4Z4Z
41 YV + 
� − f� X
��4�ZZ


��4� YV − 
� − f� X
��4�Z
��4�Z

��4�1 YV = f X44ZZZ�4Z4ZZ

41 Y −  f ��4Z4Z�Z41�j41kZ4Z4Z
4B � +


� − f� 
��4�
��4�ZZZ�
��4�Z
��4�ZZ

��4�1 − 
� − f� ;ej
��4�Z
��4�ZkZ
��4�1 � 
��4�Z
��4�Zj
��4�1kZg


��4�B <                      (B3) 

To obtain equation (7), we take expectation on both sides of equation 
#3� to obtain; 

! X7:h
2�
72: Y = ! ]f X44ZZZ�4Z4ZZ

41 Y − f �41j4Z4ZkZ�4Z4Zj41kZ
4B � + 
� − f� X
��4�
��4�ZZZ�
��4�Z
��4�ZZ


��4�1 Y − 
� − f� �
��4�1j
��4�Z
��4�ZkZ�
��4�Z
��4�Zj
��4�1kZ

��4�B � ^  (B4) 

But !
f� = ��. Hence on substituting, we get 
! ;,./
��,�. < = �� ���VVV − �V�VV

�' � − �� ;�'��V�V�V − �V�V��'�V
�t < 

+�
1 − �� X
��4�
��4�ZZZ�
��4�Z
��4�ZZ

��4�1 Y − �
1 − �� �
��4�1j
��4�Z
��4�ZkZ�
��4�Z
��4�Zj
��4�1kZ


��4�B �             (B5) 

Upon simplification, we get; 

! X7:h
2�
72: Y = � X�VVV − 4Z4ZZ

4 Y − � �j4Z4ZkZ
4 − 4Z4Zj41kZ

4: � + � X
1 − ��VVV − 
��4�Z
��4�ZZ

��4� Y − � �X
��4�Z
��4�Z


��4� YV − 
��4�Z
��4�Zj
��4�1kZ

��4�: �  (B6) 

where � = � − 
1 − ����� − 
1 − ��� 
�' = 
� − 
1 − ����� − 
1 − ����. 
� − 
1 − ����� − 
1 − ���� = �' − 2�
1 − ����� − 
1 − ��� + 
1 − ��'�L� − 
1 − ��M'   (B7) 

��'�V = 2� − 2�
1 − ��'����� − 
1 − ���'                                                           (B8) 

�V = �
1 − ������� − 
1 − ���                                                                               (B9) 

�V�V = �'
1 − ��'��'�� − 
1 − ���'                                                                     (B10) 

��V�V�V = 
2� − 2��'
1 − ��'��.�� − 
1 − ���'
−1�                                          (B11) 

�VV = −�
� − 1�
1 − ����'�� − 
1 − ���                                                             (B12) 

�VVV = �
� − 1�
� − 2�
1 − ����.�� − 
1 − ���,                                                  (B13) 

and 


1 − �� = 1 − � + 
1 − ����� − 
1 − ���                                                            (B14) 


1 − ��' = 
1 − � + 
1 − ����� − 
1 − ����. 
1 − � + 
1 − ����� − 
1 − ����= 1 − � + 
1 − ����� − 
1 − ��� − � + �' − �
1 − ����� − 
1 − ��� + 
1 − ����� − 
1 − ���− �
1 − ����� − 
1 − ��� + 
1 − ��'��� − 
1 − ���' 

= 1 − 2� + 2
1 − ����� − 
1 − ��� + �' − 2�
1 − ����� − 
1 − ��� + 
1 − ��'��� − 
1 − ���'  (B15) 

�
1 − ��'�V = −2�
1 − ������� − 
1 − ��� + 2��
1 − ������� − 
1 − ��� − 2�
1 − ��'����� − 
1 − ���'  (B16) 


1 − ��V = −�
1 − ������� − 
1 − ���                                                                    (B17) 


1 − ��V
1 − ��V = �'
1 − ��'��'�� − 
1 − ���'                                                    (B18) 
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�
1 − ��V
1 − ��V�V = 
2� − 2��'
1 − ��'��.�� − 
1 − ���'
−1�                                           (B19) 


1 − ��VV = �
� − 1�
1 − ����'�� − 
1 − ���                                                           (B20) 


1 − ��VVV = −�
� − 1�
� − 2�
1 − ����.�� − 
1 − ���                                           (B21) 

Substituting 
#7� although to 
#21� into 
#4�, we get; 

! X7:h
2�
72: Y = � X�
� − 1�
� − 2�
1 − ����.�� − 
1 − ��� + �1
����
��2�1 3:���
�����1

4 Y − � X��1
'��'�
��2�1 3:���
�����1
4 −

L�1
��2�1 31���
�����1M.L'��
��2� 3����
�����M�'�
��2�1 3����
�����1
4: Y + � X−�
� − 1�
� − 2�
1 − ����.�� − 
1 − ��� +

�1
����
��2�1 3:���
�����1

��4� Y − � X
'��'��1
��2�1 3:���
�����1
���


��4� Y − ;�1
��2�1 31���
�����1.X�'�
��2� 3����
�����Y

��4�: < +

X�'��
��2� 3����
������'�
��2�1 3����
�����1

��4�: Y                                           (B22) 

which reduces to; 

! ;,./
��,�. < = ��'
� − 1�
1 − ��'��'�� − 
1 − ���'
� + ��'
� − 1�
1 − ��'��.�� − 
1 − ���'


1 − ��  

+ ��'
2� − 2�
1 − ��'��.�� − 
1 − ���'
� + ��'
2� − 2�
1 − ��'��.�� − 
1 − ���'


1 − ��  

− 
�'
1 − ��'��'�� − 
1 − ���'�. L2�
1 − ������� − 
1 − ���j� − 
1 − ����� − 
1 − ���kM��.  

+ v�1
��2�1 31���
�����1w
���'�
��2� 3����
�����X���9
��2� ���
�����Y0

��4�:                         (B23) 

Hence on substituting � and 
1 −  �� in 
#23�, we get; 

! ;,./
��,�. < = ��'
� − 1�
1 − ��'��.�� − 
1 − ���' �1� + 11 − �� + ��'
2� − 2�
1 − ��'��.�� − 
1 − ���' �1� + 11 − ��
+ 2��.
1 − ��.��.�� − 
1 − ���. �−��. − 1 − �
1 − ��.� 

Hence; 

! ;,./
��,�. < = ��'
1 − ��'��.�� − 
1 − ��'��'
1 − ��' ��
1 − ��
−� − 1� + 2
� − 1��
1 − ��� − �2�
1 − ����� − 
1 − ���
2� − 1��
= ��'
1 − ��'��.�� − 
1 − ��'��'
1 − ��' X3
� − 1��
1 − �� − 
4�� − 2��
1 − ����� − 
1 − ���Y 

Further; 

! X7:h
2�
72: Y = 0�1
��2�1 3:���
�����1

41
��4�1 j3
� − 1�
� − �'� − 
4�� − 2��
1 − ����� − 
1 − ���k          (B24) 

Equation 
#24� simplifies to; 

! X7:h
2�
72: Y = 0�1
��2�1 3:���
�����1

41
��4�1 53�� − 3�'� − 3� + 3�'6 − 4��
1 − ����� − 
1 − ��� + 2�
1 − ����� − 
1 − ���  (B25)
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