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ABSTRACT

Malaria is one of the major causes of deaths and ill health in endemic regions of sub-
Saharan Africa and beyond despite efforts made to prevent and control its spread. Epi-
demiological models on how malaria is spread have made a substantial contribution on
the understanding of disease changing aspects. Previous researchers have used Suscept-
ible –Exposed-Infectious-Recovered (SEIR) model to explain how malaria is spread
using ordinary differential equations. The main goal of this research was to develop
mathematical SEIR epidemiology model to define the dynamics of the disease spread
using delay differential equations with four control measures such as long lasting treated
insecticides bed nets, intermittent preventive treatment of malaria in pregnant women
(IPTP), intermittent preventive treatment of malaria in infancy (IPTI) and indoor re-
sidual spraying.The model would help health professionals to appreciate the dynamics
of the spread of malaria and use the control measures above as intervention measures
in controlling malaria spread. The model is then analysed and reproduction number
derived using next generation matrix method and its stability is checked by jacobian
matrix. Positivity of solutions and boundedness of the model is proved. We show
that the disease free equilibrium is locally asymptotically stable if R0 < 1 and un-
stable if R0 > 1. Numerical simulations results shows that basic reproduction number
R0 = 0.2004 and with proper treatment and control measures put in place the disease
is controlled.
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CHAPTER ONE

INTRODUCTION

1.1 Overview

The World health organization ( WHO) estimated that there were 405,000 deaths from

malaria worldwide in the year 2018 compared with 416,000 estimated in 2017 and

585,000 in the 2010 respectively.From the above statistics,malaria remains a major pub-

lic health problem which requires immediate attention.

1.2 Background of the Study

Malaria is one of the most pandemic disease that remains arguably the greatest threat

in our society and has remained the main cause of deaths in Africa and many regions

of the world. Malaria was a major bottleneck in military camps in the United States

where they initiated malaria campaigns (Nyangera, 2013). In the Second World War

and war in Vietnam, more employees died as a result of malaria than those who died

as a result of war. The discovery that malaria is transmitted by mosquitoes and was

killing many people, they sought for ways on to control the spread. The measures that

were designed targeted the life cycle of mosquito, at both larval stages and adult stages

of the insect. During these two stages mosquitoes could be controlled by spraying us-

ing insecticides .In some regions such as the southern United States, they were able to

drain swamps to reduce mosquito infestation. Substantial measures were taken when

insecticide dichlorodiphenyltrichloroethane (DDT) and drug chloroquine were intro-

duced. The insecticide DDT became very effective in controlling the infestation of
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adult Anopheles mosquitoes. The drug Chloroquine was highly effective medicine for

handling and preventing malaria. After some time, problems soon arose where cases

of malaria increased rapidly as a result of new strains of female Anopheles mosquitoes

developing resistance to DDT and other insecticides, and the environment impact as-

sessment of DDT was realized. Meanwhile, malaria parasite became resistant to the

drug chloroquine (Nyangera, 2013).

Malaria remains a leading cause of deaths and ill health in endemic regions of the

world and has been a threat in many developing countries. Although previous research-

ers have looked into how to reduce its spreads, the disease continues to be the cause

of mortality in many regions. In 2015 World Health organization (WHO) estimated

the cases of malaria to be 214 million resulting in 438,000 deaths, majority of these

were from Africa. Sub-Saharan Africa continues to exhibit a considerably high num-

ber of epidemics of malaria which results to many deaths. Furthermore, WHO (2016)

estimates that there were 216 million quantifiable cases of malaria and 445,000 people

perished of whom 306,000 were children under the age of 5 years and were mainly from

Africa.

Severe malaria can lead to cerebral malaria, which is associated with unconscious-

ness, seizures, or other neurological anomalies. Risks associated with malaria in expect-

ant mothers include maternal anaemia, low weight in infants (LBW), immature delivery

and increased infant and maternal deaths (WHO, 2016).

The prevalence of malaria has been on the rise owing to malaria parasite develop-

ing resistance to drugs, mosquito-insecticide resistance and weak malaria intervention

measures. This therefore warrants efficient and effective control measures on the spread

of malaria.
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1.2.1 Transmission of malaria

Malaria is transmitted by Plasmodium parasite. One gets malaria by being bitten by in-

fected female anopheles mosquito. The mosquito must have been infected from blood

meal of infected persons. Blood of infected person has microscopic malarial parasite

that can be passed onto a mosquito when it bites such an individual. The malarial para-

site incubates for about seven days after which it becomes infectious and if a mosquito

bites a new individual the parasite from the blood meal will mix with mosquito’s saliva

and can be transmittable to the person being bitten. Malaria symptoms appears within

9-14 days. The most common symptoms are headache, fever and vomiting. Other ways

through which malaria can be spread is by through blood transfusion or even by sharing

used needles or syringes from blood which is contaminated. Also During delivery or

before delivery of the new born baby, the mother may pass over the disease to the baby

child. The various plasmodium parasite which causes malaria in individuals include:

(i) Plasmodium falciparum – Malarial deaths worldwide is brought about by this

parasite specifically in Africa.

(ii) Plasmodium Vivax- Less severe symptoms is observed in this parasite as compared

to Plasmodium falciparum though it may end at relapses as it can remain in the

liver even for three years. It is common in Asia and Latin America.

(iii) Plasmodium ovale – It is rare though it may be found in West Africa. Its incuba-

tion period take years in the liver.

(iv) Plasmodium malariae – It is found in Africa though rarely.

(v) Plasmodium knowlesi – This is common in south East Asia though it is very rare.
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Of all these, Plasmodium falciparum is the type of malaria parasite that usually

causes severe deaths in many countries in Africa.

1.2.2 Signs and symptoms of malaria

Signs and symptoms may include fever, joint pains, Shaky chills, headache, muscle

pains and drowsiness. Biliousness vomiting and diarrhoea could take place. Anaemia

and jaundice may be as a result of malaria because red blood cells are reduced.

1.2.3 Asymptomatic malaria

Human host is considered asymptomatic when it is a carrier for malaria or infection,

but experiences no symptoms. Countries infected by malaria in great percentage of

Plasmodium falciparum contagions are asymptomatic. Microscopy detected levels of

asymptomatic carriage as high as 39% have been reported by (WHO). Always, this con-

cealed pool of parasites is crucial for keeping infection cycle. In areas vulnerable to the

disease exposing continuously to the parasites results in limited invulnerability and sub-

sequently form carriers the populace given. Furthermore, asymptomatic cases provide

an important pool of parasites which may result in gametocyte carriers, contributing in

the continuous spread of malaria. Consequently incidence of asymptomatic case in any

malaria endemic area has been a big problem in the management and eradication pro-

gram. Interrupting malaria transmission in prone area could be effective in eliminating,

detection of carrier parasite by active case and even in full treatment.

1.2.4 Mosquito life cycle

Mosquitoes are pests that feed on blood and often spread the diseases that affect human

health and affect our day to day activities. Nonetheless, the adult stage of the mosquito’s
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life cycle is the stage that is harmful to the human and animal health. Mosquito life cycle

has varied morphology even though all the stages go from a common cycle of life.

1.2.4.1 Egg stage

Eggs are laid one at a time and they float on the surface of water or places where there

are floods. Most eggs hatch into larvae within 48 hours.

1.2.4.2 Larval stage

Once mosquito larvae have hatched from the eggs they go through four instars changing

in size after moulting in each stage. During this stage, the species display great variation

in morphology and it is at this stage where they can be identified .Larvae take in oxygen

from the atmosphere through a tube popping through the water surface, while the rest

of the body align horizontally with the water surface so as to make it easier to breathe.

1.2.4.3 Pupa stage

This stage involves transition from water stages of mosquito’s life cycle to surface-

dwelling adult stage. They also live in water but mobile without feeding and escape

from predators using a sinking motion in a maximum of two days where it moults into

adult.

1.2.4.4 Adult stage

The newly emerged adult rests on the surface of water for a short time to allow itself

to dry and all its parts to harden. Female mosquitoes are mated immediately they are

capable. Mosquitoes maintain their energy from carbohydrate sources (nectar) which

will be used for mating, flying and seeking host for blood meal. Female mosquito
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develop eggs therefore require to take a blood meal so that she gets the extra-protein.

Taking blood meal from malarial infected individual is a way of malarial transmission.

1.2.5 Delay differential equations

Delay differential equations (DDEs) are equations that involves the derivative of the

unidentified function at a definite period given in relations to values of the function at

preceding times. It takes the form:

d

dt
x(t) = f(x(t), xτ , t) (1.1)

where x ∈ Rn and τ is a positive integer.

1.3 Statement of the Problem

Although impressive preventive measures have been put in place in some tropical re-

gions for example use of anti-malarial drugs,( prophylaxis of high risk groups e.g infants

and pregnant mothers) early and prompt treatment of suspected cases with the use of

drugs ,the spread of the disease was still a serious threat and the causes that maintain

the spread remained to be a significant test with half of population still at risk of malaria

with no effective vaccine available and with many anti-malarial drugs losing effective-

ness due to evolved resistance and there is need to understand the spread of malaria.

Consequently, in the study we developed a delay SEIR model, where in the model we

determined the equilibrium state and incorporated control and preventive measures so

as to understand the spread of malaria.
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1.4 General Objective

The general objective of the study was to develop a delay differential equation model

and to investigate the most effective control intervention measures of malaria.

1.5 Specific Objectives

The specific objectives for this study were:

(i) formulate a mathematical SEIR-SEI model to describe the spread of malaria.

(ii) determine the steady states of the SEIR-SEI model and their local stabilities.

(iii) carry out sensitivity analysis of the Basic reproduction number R0 with respect to

the SEIR- SEI model parameters.

(iv) carry out numerical simulations with MATLAB to verify analytic results

1.6 Justification of the Study

In this study we have addressed the importance of the model in the transmission dynam-

ics of malaria. We have considered SEIR-SEI malaria transmission model with control

measures with prime purpose of controlling malaria.We have addressed the paramet-

ers that impact the most on the reproduction number and the control measures that are

responsible in reducing the spread of malaria.

1.7 Significance of the Study

Despite encouraging declines in disease over the past decades, malaria remains a lead-

ing cause of deaths and ill health in all endemic regions of sub Saharan Africa and

beyond. The significance of this study would help the stakeholders in the public health
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ministry to appreciate the dynamics of the spread of malaria and be able to devise real-

istic targets for intervention, since the results on control measures would provide relev-

ant guidance on which interventions to focus on. The study would also assist scholars,

scientist and mathematicians to improve on earlier developed models and include better

and cost-effective control and preventive measures so as to reduce spread of malaria.

1.8 Scope of the Study

The study focused on developing malaria transmission SEIR-SEI model for human

and mosquito population. The model was analysed by developing equations and de-

termining reproduction number using next generation matrix and employed the use of

delay differential equations in explaining malaria transmission dynamics. The study

was modelled for a period of 350 days so as to know the extent of malaria transmission

in a year. In the model, the intervention measures such long lasting treated bed nets,

indoor residual spraying and intermittent preventive treatment for malaria for infants

and expectant mothers and treatment by use of a drug were included .

1.9 Limitations of the Study

Analysis of the model was limited to the use of next generation matrix to generate

reproduction number which measures the extent of malaria spread. The study incorpor-

ated all the four interventions measures mentioned in the scope of study above to model

malaria transmission. Simulation analysis was done using MATLAB software.

1.10 Assumptions of the Study

The study assumed that mosquitoes and humans become susceptible at birth and that

the infected humans and mosquitoes move into the exposed class if they escape death.
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Mosquitoes and humans enters infectious class after latent period. Since lifespan of

mosquitoes is relatively smaller as compared to humans, mosquitoes die after infection.

On the other hand if humans receive treatment they recover from the disease and move

to the recovered class where after a short while they become susceptible again and hence

the SEIR-SEI model.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

There are a number of considerable literature on various mathematical malaria models

from various scholars that were used to pronounce blow-out of malaria and various

strategies to control malaria in pandemic regions of the world.

2.2 Review of Related Literature

Jessicca (2018) studied malaria spread dynamics for human and mosquito populations

by considering vectorial transmission, vertical transmission of disease and a force of

infection which measure the influence that occurs in the disease transmission rate which

an infected human is introduced into mosquito population. The study examine a SEIR

model for humans and SIR model for mosquitoes but fail to incorporate preventive and

control measures to reduce malaria prevalence. The analysis revealed the existence of

three steady states, the disease free equilibrium and two endemic equilibrium and that

when R0 < 1 , then disease is controlled and when R0 > 1, the disease persists. In the

study ordinary differential equation were used ,which in this research is addressed by

introducing delay differential equations to gather for the latency period that take place

between when a mosquito bites and human becoming infected.

Sunita (2017), Studied SEIR model for human and SI model for mosquito popu-

lation. SEIR model took into account new immigrants in the population who are sus-

ceptible, exposed and infective. Impressed by Sunita’s work, Nisha (2017), analyzed
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the steadiness of SEIR model for malaria with infectious migrants but failed to carry

out simulation and sensitivity analysis of the given model which was necessary so as to

understand the effect of infective immigrants on the spread of malaria in a population.

Similar studies were carried by Mojeeb (2017) who used a SEIR mathematical model

using ordinary differential equations with four control measures such as reducing con-

tact rate between humans and mosquitoes, reducing the infection rate between humans,

use of active malaria drugs and treated mosquito nets.

Agyingi (2016) ,studied the dynamics of several species and strains of malaria. In

the model four species of the malaria parasite was considered and from the study it was

found out that some species of the parasite have evolved into strains that are resistant to

treatment. The model found out that all species or strains persist for some time for the

reproduction number greater than one, however the species or strain with the highest

reproduction number eventually displace the other species. In the model factors such

as seasonality, age structure of humans and mosquitoes’ incubation period and spatial

distribution were not considered.

Abay (2015) ,looked at the important parameters in the transmission and the spread

of endemic malaria disease. The model was developed using ordinary differential equa-

tions,carried out qualitative analysis which include dimensional analysis, scaling and

perturbation technique in addition to stability theory for ODE systems. In the the study

control measures were not incorporated as well as most sensitive parameters which

affect the reproduction number. Fatima (2015), in the model studied about imported

population. Compared malaria cases between the local population and non-local popu-

lation (immigrants), where the locals was represented by SEIRS model, non- local SEI

model and mosquito population represented by SI model structure. From the model re-
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covery was not included in non-locals but assumes that once infected will be deported

or isolated from the population.

Xiao (2013) ,derived a nonlocal and time delayed reaction- diffusion model. From

the model positivity and invariance of travelling wave solutions of the resulting Cauchy

problem in an unbounded domain was considered.In the study delay differential equa-

tions was used to analyze the model however,control measures were not incorporated

in understanding disease changing aspects.

Tumwiine (2014) ,considered a model that looks at the emergence of drug resistance

against the most common and affordable antimalarial as an obstacle to malaria control.

From the model treatment as a preventive strategy was incorporated and used ordin-

ary differential equation to analyze the model. Existence and stability of disease free

equilibrium and endemic equilibrium was determined and increased treatment efforts

on individuals with sensitive strains making sure that evolution of drug resistance was

kept to the minimum.The study did not include the time delays which represents the

incubation periods of vectors and human population as this will assist significantly in

computation of reproduction number as time delays reduces reproduction number.

Shigui (2008), considered the response dynamics from mosquito to human and back

to mosquito to involve substantial time delays due to the latency periods of the para-

sites.The effect latency on the basic reproduction number was considered and it was

pointed out that prolonging incubation period in either humans or mosquitoes by use of

control measures would result in decreasing the incidence of infection.However, sensit-

ivity analysis was not carried out to find out the parameters that affect the reproduction

number the most.

In his Ph.D. dissertation, Chitnis (2005) analyzed a comparable model for malaria
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spread, where in this model, divided human population into four classes SEIR, where

people from the exposed class enter the transmissible class at a rate that was give-

and-take of the duration of the latent period. After some time the infectious humans

recover and move to the recovered class and recovered humans have some immunity to

the disease. In the model humans leave the population through a dependent per capita

emigration and natural death rate and also through a per capita disease-induced death

rate.The effects of the environment on the spread of malaria such as temperature, rainfall

and humidity was considered which showed that the human or mosquito population

approaches the locally asymptotically stable endemic equilibrium point depending on

the number in the susceptible class.

Ngwa and Gumel (2010) ,the model described a compartmental model where hu-

mans follow Susceptible Sh-Exposed Eh-Infected Ih-Immune Rh and mosquitoes fol-

low: Susceptible Sm-Exposed Em-Infected Im.They defined a reproductive number

R0 and shows that disease free equilibrium is stable for R0 ≤ 1 and unstable when

R0 ≥ 1.The model also included net population growth in predicting the number of

death rate that arose as a result of the disease.In the analysis they used ordinary differ-

ential equation but fail to capture time delays between when the mosquito bites and one

becoming sick.

Koella (1991) investigated the reasons for the prevalence of the disease and nature

and causes of its variation.It also looks at the dynamics of malaria transmission by con-

sidering life cycle of mosquito.From the study it was found out that malaria exists in

a population only if mosquito density exceeds a certain critical threshold,continuity of

malaria is most sensitive to changes in mosquito survival rate.The study used ordinary

differential equations and fail to capture time delays between mosquito biting human
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host and one becoming sick. Nedelman (1984) ,reviewed a study by Dietz et al. (1974)

and included vaccination rate.It was shown that the rate of vaccination rely on virtual

equilibrium estimate to the differential equation defining the mosquito changing aspects

in the malarial model.Survey was conducted on various data sets to statistically approx-

imate parameters such as inoculation rates, rates of recovery and loss of immunity in

humans, human-biting rates of mosquitoes, infection and susceptibility of humans and

mosquitoes.

Dietz et al. (1974) ,investigated on two different types of immunity in individuals,

some with invulnerability to malaria and some class with insusceptibility. As the non-

immune class falls sick some people recover with immunity. The immune class got

the disease but were asymptomatic and could not transmit the disease.The model also

included super infection, a phenomenon usually associated with macro- parasites.

Aron and May (1982) made further modifications and improvement to the Macdon-

ald (1957) model by considering various malaria characteristics such as latency period

in mosquitoes, a periodically changing density of mosquitoes, super infection and a

period of human’s immunity. The age-specific resistance model was considered with a

new compartment invulnerable class (Rh) being introduced. So that humans consist of

three compartments, Susceptible (Sh),Infected (Ih) and Immune (Rh) classes to form

(SIR model) a model for immunity was included, where the variables are the popula-

tion of asexual blood stages of plasmodium in humans and the level of human immunity.

Therefore the variables depend on time and age.

Macdonald (1957) ,developed a model that incorporated biological facts of latency

in the mosquito due to malarial parasite growth and well thought-out adult female mos-

quito as the weakest element in malaria cycle.From the model the Exposed class was
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introduced in the mosquitoes, so that three compartments of mosquito population is

factored in (SEI) and the model studies the time evolution of the (Sh) and disease-ridden

(Ih) classes.

Ross (2011) ,studied deterministic model of malaria by adopting a SIS structure

model for population of individual and SI structure for mosquito population. Human

population move from susceptible (Sh) class to Infectious (Ih) class where susceptible

class is joined by the infected individuals again resulting to SIS structure. The parasite

takes only two compartment (Sm,Im) moving from susceptible class to infectious class

where short life span followed makes them not recover from contagion and hence follow

SI structure. Ross directed from the study on how mosquito could be controlled and

showed that for disease to be reduced the mosquito population should be brought below

a certain threshold. Ross fails to consider the incubation period of a parasite and their

survival during the period.

2.3 Identification of Knowledge Gap

From the above reviews the use of delay differential equations with control measures

has not been used, which our findings have used to explain the dynamics of disease

transmission. The delay differential equation has been used because of time lag between

when a mosquito bites and the time one becomes sick.

15



CHAPTER THREE

METHODOLOGY

3.1 Introduction

This chapter outlines the methodology used in the thesis. The standard model for mal-

aria spread was a slight modification to those considered by Chitnis (2005), Agyingi

(2016) and Jessicca (2018) where constant control factors and stability properties are

analysed. The standard model for SEIR for humans and SEI for mosquitoes was con-

sidered using delay-differential equations. Preventive measures were taken into con-

siderations in our model. For instance ,intermittent preventive treatment of malaria in

pregnant mothers, Long- Lasting Insecticides Treated Nets (LLINS), indoor residual

spraying (IRS) also their effects based on the fact that the methods are recommended

for prevention by (WHO) and intermittent preventive treatment of malaria in infancy.

In this model human population was sub divided into four classes while mosquito pop-

ulation into three classes. Human population follows the following classes namely:,the

susceptible class (Sh) which represents the part of population that was vulnerable to in-

fection ,Exposed class ( Eh) which represents the part of population who are diseased,

but not infective and they could not transmit the infection, next was infectious class

(Ih), part of population who have been infected and are capable of spreading the dis-

ease, finally the Recovered class (Rh), the part of population who recover from infection

through treatment with temporary immunity. The total human population is expressed

as;

Nh = Sh + Eh + Ih +Rh (3.1)
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The female anopheles mosquito population was divided into 3 classes, susceptible (Sm),

Exposed (Em) and Infectious class (Im).So that the total vector population is Nm =

Sm + Em + Im. Because the lifespan of humans is higher as compared to the life

expectancy of mosquito, our model assumed mosquitoes dies after infection.

3.2 Model Assumptions

The following are the assumptions of our model

i) Individuals are moved directly into the susceptible class at birth

ii) Infected individuals move into the exposed class after latent period, if they escape

death they move to infectious class.

iii) Since the lifespan of mosquito is relatively small compared to the lifespan of hu-

mans, mosquitoes will die from infection.

iv) No recovery for infected mosquitoes

v) There is homogeneous interactions in the human population

vi) Human beings have natural immunity to malaria.

vii) A fraction of exposed class move to infectious class after losing natural immunity.

viii) All parameters in the model are non-negative

ix) The parameter k and l are respective rates for removal of mosquitoes from different

classes by the use of LLINS and IRS.

x) LLINS and IRS are denoted by the letters x and y respectively.

xi) Total human population varies with time
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xii) Humans and mosquitoes enter the population at specific birth rates, Λh and Λm

respectively, die from natural causes at specific rates αh and αm,respectively, and

die from disease induced death rates at specific rates, βh and βm respectively.

xiii) We allowed individuals to move from susceptible human population to the exposed

human at a rate which was proportional to both size of susceptible human popu-

lation and infected mosquito population and inversely proportional to total human

population γShIm
Nh

xiv) Members of exposed class (Eh) move to infected human class (Ih) at a rate propor-

tional to the number of individuals in the exposed class, ρEh,

xv) Individuals in the infected class move to recovered class at a rate proportional to

the number of individuals in the infected class, σIh.

xvi) Lastly, individuals in the recovered class move to susceptible class at a rate propor-

tional to size of individuals in the recovered class, µRh.

xvii) Similarly, for mosquito population susceptible mosquitoes move to exposed class

at a rate θSmIh)
Nm

.

xviii) Finally mosquitoes in the exposed class move to infectious class at the rate propor-

tional to the size of individuals in the exposed mosquito population ωEm.

In addition to considering various stages of the disease, we modelled the effects of

malaria preventive measures which includes;

i) Long lasting treated bed nets (LLINS)

ii) Intermittent preventive treatment of pregnant women and infants(PT ) (using pro-

phylaxis)
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iii) Indoor residual spraying

3.3 Model Formulation

The following is the Human-Mosquito model diagram;

Figure 3.1: Human-Mosquito model Flow Diagram

3.4 Model Equations

From the assumptions made, the following are the model equations:

dSh
dt

= Λh + µRh − αhSh − (γShIm(t−τ)(1−x))
Nh

dEh
dt

= γShIm(t−τ)(1−x)
Nh

− ρEh(t− τ)− αhEh(t− τ)

dIh
dt

= ρEh(t− τ)− (αh + βh)Ih − σ(1− z)Ih(t− τ)

dRh
dt

= σ(1− z)Ih(t− τ)− αhRh − µRh

dSm
dt

= − θSmIh(t−τ)(1−x)
Nm

+ Λm − (αm + βm +Kx+ Ly)Sm

dEm
dt

= θSmIh(t−τ)(1−x)
Nm

− ωEm(t− τ)− (αm + βm +Kx+ Ly)Em

dIm
dt

= ωEm(t− τ)− (αm + βm +Kx+ Ly)Im



(3.2)
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where τ > 0 is the time delay.

3.5 Positivity and Boundedness of Solutions

3.5.1 Positivity of solutions

The following theorem is used in determining positivity of our solutions.

Theorem 3.1

Let the initial data be

{(Sh(0), Sm(0) ≥ 0, (Eh(0), Ih(0), Rh(0), Em(0), Im(0)}

Then the solution set

{Sh, Eh, Ih, Rh, Sm, Em, Im} (t)

of the system is non-negative for all t ≥ 0

Proof:

From the system of equation 3.2, we have;

dSh
dt

= Λh+µRh−αhSh−
(γShIm(t− τ)(1− x))

Nh

≥ −αhSh−
γShIm(t− τ)(1− x)

Nh

=⇒ dSh
dt
≥ −

(
αh +

(γIm(t− τ)(1− x))

Nh

)
Sh (3.3)

Using separation of variables and integrating both sides

∫
1

Sh
dSh ≥ −

∫ (
αh +

γIm(t− τ)(1− x)

Nh

)
dt

ln Sh ≥ −
(
αh +

γImSh(t− τ)(1− x)

Nh

)
t+ c (3.4)
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Sh(t) = e(αh+γIm(t−τ)(1−x))t × ec

If we let ec = K, then we have

Sh(t) = Ke(αh+γIm(t−τ)(1−x))t (3.5)

When t = 0, Sh(0) ≥ KSh(t) ≥ Sh(0)e(αh+γIm(t−τ)(1−x))t ≥ 0

From the second equation of system (3.2)

dEh
dt

=
(γShIm(t− τ)(1− x))

Nh

− ρEh(t− τ)− αhEh(t− τ)

=⇒ dEh
dt

=
(γShIm(t− τ)(1− x))

Nh

−ρEh(t−τ)−αhEh(t−τ) ≥ −(ρ+αh)Eh(t−τ)

=⇒ dEh
dt
≥ −(ρ+ αh)Eh(t− τ) (3.6)

Integrating both sides we have

∫
1

Eh
dEh ≥ −

∫
(ρ+ αh)(t− τ)dt

In Eh ≥ − (ρ(t− τ) + αh(t− τ)t) + c

Eh(t) = e−(ρ(t−τ)+αh(t−τ)t) × ec (3.7)

Let ec = K

When t = 0, Eh(0) ≥ ec

Eh(t) ≥ Eh(0)e−(ρ(t−τ)+αh(t−τ)t) ≥ 0 (3.8)
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Similarly, it can be shown that the remaining equations of the model are positive for all

t > 0, because eℵ > 0, for all ℵ ∈ R.

This confirms that our model has both invariant and positivity of solutions.

3.5.2 Boundedness of solutions

The total population in our model are;

Nh = Sh + Eh + Ih +Rh

Nm = Sm + Em + Im

And their respective differential equations are:

Nh

dt
=
Sh
dt

+
Eh
dt

+
Ih
dt

+
Rh

dt
= Λh − βhIh − αhNh (3.9)

And

Nm

dt
=
Sm
dt

+
Em
dt

+
Im
dt

+
Rm

dt
= Λm − (αm + βm +Kx+ Ly)Nm (3.10)

All state variables are assumed to be positive since the model is dealing with population.

The positive invariant region can be obtained by the following theorem.

Theorem 3.2

The solution of system of equation (3.2) are feasible for all t < 0 if they enter

invariant region

D = Dh ×Dm

Proof

LetDh = (Sh, Eh, Ih, Rh) ∈ R4
+ be any solution of equation, (3.2) with nonnegative
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initial conditions. Assuming that malaria does not kill (β = 0, Ih = 0), equation (3.9)

becomes

dN

dt
≤ Λh − αhNh

=⇒ dN

dt
+ αhNh ≤ Λh (3.11)

Using differential equation of the form y′ + p(t)y = q(t), we have p(t) = αh and

q(t) = Λh.

Therefore the integrating factor (IF) for equation (3.11) is given by;

e
∫
p(t)dt = e

∫
αhdt = eαh(t)

Multiplying both sides of equation (3.11) by eαh(t) gives

dN

dt
eαh(t) + αhNhe

αh(t) ≤ Λhe
αh(t)

d

dt
(Nhe

αht) ≤ Λhe
αht (3.12)

Integrating both sides of the inequality (3.12) w.r.t t , we have Nhe
αht ≤ Λhe

αh

αh
+ c,

where c is a constant.

=⇒ Nh ≤
Λh

αht
+ ce−αht (3.13)
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Using the initial conditions at t = 0, Nh(0) = Nh(0), we have;

Nh(0) ≤ Λh
αht

+ c

=⇒ Nh(0)− Λh
αht
≤ c

=⇒ Nh ≤ Λh
αh

+ (Nh(0)− Λh
αh

)e−αht

=⇒ 0 ≤ Nh ≤ Λh
αh

as t→∞

Thus the total human population is given as;

Nh ≤
Λh

αh
(3.14)

Hence

Dh =

(
(Sh, EhIh, Rh) ∈ R4

+, Sh > 0, Eh ≥ 0, Ih ≥ 0, Rh ≥ 0, Nh ≤
Λh

αh

)
(3.15)

Similarly, the feasible solutions of the vector (mosquito) population enters the re-

gion

Dm =

(
(Sm, Em, Im) ∈ R3

+, Sm > 0, Em ≥ 0, Im ≥ 0 ≥ 0, Nm ≤
Λm

αm

)
(3.16)

Therefore, the feasible solutions set for the model is given by,

D =
(
(Sh, EhIh, Rh, Sm, Em, Im) ∈ R7

+, (Sh, Sm) > 0, (Eh, Ih, Rh, Em, Im) ≥ 0
)

(
Nh ≤ Λh

αh
, Nm ≤ Λm

αm

)


(3.17)

Therefore the regionD is positively invariant and therefore the model is biologically

well posed in the domain D.
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3.6 Basic Reproduction Number R0

Diekmann (2000) defined Basic reproduction number as expected number of secondary

cases produced by a single infection in a completely susceptible population. That is, it

is a measure of how fast a disease spreads through a population.

Basic reproduction number is obtained by taking the largest dominant eigenvalue of

FV −1 or spectral radius of FV −1
(
∂FiE0

∂xj

)(
∂ViE0

∂xj

)
Let F =

(
∂FiE0

∂xj

)
, V =

(
∂ViE0

∂xj

)
and E0 be disease free equilibrium.

From the system, Fi and Vi are defined as

Fi is the rate of appearance of new infections in compartment i.

Vi is the transfer of individuals into compartment i.

Vi = v−i (x)− v+
i (x)

For computation of F We have,

Fi =



γShIm(t−τ)(1−x)
Nh

0

θSmIh(t−τ)(1−x)
Nm

0


(3.18)

Taking partial derivatives ∂Fi
∂Eh

, ∂Fi
∂Ih

, ∂Fi
∂Em

, ∂Fi
∂Im

, we get the 4× 4 matrix below;

25



F =



0 0 0 γSh(1−x)e−λτ

Nh

0 0 0 0

0 θSm(1−x)e−λτ

Nm
0 0

0 0 0 0


(3.19)

For computation of V , we have,

Vi =



(ρ+ αh)Eh(t− τ)

(αh + βh)Ih + σ(1− z)Ih(t− τ)− ρEh(t− τ)

ωEm(t− τ) + (αm + βm +Kx+ Ly)Em

(αm + βm +Kx+ Ly)Im − ωEm(t− τ)


(3.20)

Taking partial derivatives ∂Vi
∂Eh

, ∂Vi
∂Ih

, ∂Vi
∂Em

, ∂Vi
∂Im

, we get the 4× 4 matrix below;

V =



A 0 0 0

B C 0 0

0 0 D 0

0 0 E F


(3.21)
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where

A = (ρ+ αh)e
−λτ

B = −ρe−λτ

C = (αh + βh) + σ(1− z)e−λτ

D = ωe−λτ + (αm + βm +Kx+ Ly)

E = −ωe−λτ

F = (αm + βm +Kx+ Ly)

The inverse of matrix V is the given by;

V −1 =



1
A

0 0 0

−B
AC

1
C

0 0

0 0 1
D

0

0 0 −E
DF

1
F


(3.22)

The next generation matrix FV −1 is given by;

FV −1 =



0 0 a b

0 0 0 0

c d 0 0

0 0 0 0


(3.23)

where

a = −EγSh(1−x)e−λτ

NhDF

b = γSh(1−x)e−λτ

NhF

c = −BθSm(1−x)e−λτ

NmAC

d = BθSm(1−x)e−λτ

NmC
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The characteristic equation of matrix (3.23) is computed by:

∣∣FV −1 − Iλ∗
∣∣ = 0

where I is a 4× 4 identity matrix.

=⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ∗ 0 a b

0 −λ∗ 0 0

c d −λ∗ 0

0 0 0 −λ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.24)

=⇒ −λ∗

∣∣∣∣∣∣∣∣∣∣∣∣

−λ∗ 0 a

0 −λ∗ 0

c d −λ∗

∣∣∣∣∣∣∣∣∣∣∣∣
+ a(0)− b(0) = 0 (3.25)

=⇒ λ
∗2(λ2

∗ − ac) = 0

=⇒ λ
∗2(λ

∗2 − ac) = 0

=⇒ λ∗ = 0, or λ∗ = ±
√
ac

This implies the eigenvalues are given by:

λ∗1 = λ∗2 = 0, λ∗3 = −
√
ac, λ∗4 =

√
ac (3.26)

The dominant eigenvalue is clearly λ∗4. Thus the reproductive ratio R0, which is given
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by the dominant eigenvalue, is;

R0 =

√
−EγSh(1− x)e−λτ

NhDF

−BθSm(1− x)e−λτ

NmAC

=

√
ωe−λτθ(1− x)e−λτSm

Nm {[ωe−λτ + (αm + βm +Kx+ Ly)] (αm + βm +Kx+ Ly)}

√
ρe−λτ (1− x)e−λτSh

Nh [(αhβh) + σ(1− z)e−λτ ]

(3.27)

3.7 Existence of Disease Free Equilibrium

In the absence of disease in the population we have, (Eh = Ih = 0, Em = Im = 0 =

Rh) Here,Rh = 0, since there will be no disease to recover from, hence from the system

of equation (3.2) we have,

Λh + µRh − αhSh −
(γShIm(t− τ)(1− x))

Nh

= 0 (3.28)

− (θIh(t− τ)Sm(1− x))

Nh

+ Λm − (αm +Kx+ Ly)Sm = 0 (3.29)

Substituting Im = Rh = 0 = in (3.28) we have;

Sh =
Λh

αh
(3.30)

Substituting Ih in (3.29) we have;

Sm =
Λm

αm +Kx+ Ly
(3.31)
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Similarly, when (Eh = Ih = 0, Em = Im = 0 = Rh), then the remaining equations

becomes

E0
h = 0, I0

h = 0, R0
h = 0, S0

m =
Λm

αm +Kx+ Ly
,E0

m = 0, I0
m = 0 (3.32)

Therefore disease free equilibrium point of our malaria model is given by

E0 = (S0
h, E

0
hI

0
h, R

0
h, S

0
m, E

0
m, I

0
m) =

(
Λh

αh
, 0, 0, 0,

Λm

αm +Kx+ Ly
, 0, 0

)
(3.33)

This is the state when there is no malaria in the society.

3.8 Stability of Disease Free Equilibrium

The stability of the disease free equilibrium state can be tested using eigenvalues of a

Jacobian matrix obtained at DFE. This is where R0 < 1.

J =



a 0 0 µ 0 0 b

0 c 0 0 0 0 d

0 e f 0 0 0 0

0 0 g h 0 0 0

0 0 i 0 j 0 0

0 0 k 0 0 l 0

0 0 0 0 0 m n



(3.34)
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where

a = −αh

b = −γSh(1−x)e−λτ

Nh

c = −(ρ+ αh)e
−λτ

d = γSh(1−x)e−λτ

Nh

e = ρe−λτ

f = −(αh + βh)− σ(1− z)e−λτ

g = σ(1− z)e−λτ

h = −(αh + µ)

i = − θSm(1−x)e−λτ

Nm

j = −(αm + βm +Kx+ Ly)

k = θSm(1−x)e−λτ

Nm

l = −ωe−λτ − (αm + βm +Kx+ Ly)

m = ωe−λτ

n = αm + βm +Kx+ Ly

The system of equations (3.2) is stable if all the eigenvalues of linearization matrix are

negative. The characteristic equation of the Jacobian matrix J is given by:

|J − Iλ∗| = 0
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Thus the eigenvalues of Jacobian matrix (3.34) are −(a + d), −(j + d), −(h + d) and

the remaining eigenvalues can be obtained as follows:

=⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(c+ λ∗) 0 0 d

e −(c+ λ∗) 0 0

0 k −(l + λ∗) 0

0 0 m −(n+ λ∗)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.35)

=⇒ (c+ λ∗)(n+ λ∗)(f + λ∗)(l + λ∗)− dmek = 0 (3.36)

To simplify the equation (3.36), let A1 = n,A2 = l, A3 = f, A4 = c and Q = dmek

This implies

(λ∗ + A1)(λ∗ + A2)(λ∗ + A3)(λ∗ + A4)−Q = 0 (3.37)

=⇒ λ4
∗ + λ3

∗B1 + λ2
∗B2 + λ∗B3 +B4 = 0 (3.38)

where,

B1 = A4 + A3 + A2 + A1

B2 = A4(A3 + A2 + A1) + A3(A2 + A1) + A2A1

B3 = A4A3A2 + A4A3A1 + A3A2A1

B4 = A4A3A2A1 −Q

ThereforeR0 in equation (3.27) can be written in terms ofAi where i = 1, 2, 3, . . . , n

as

R2
0 =

e−λτθ(1− x)e−λτSm)(ρe−λτ (1− x)e−λτSh)

NmNhA3A2A2
1

(3.39)

Using the Routh-Hurwitz criteria on equation (3.38) we can show that all roots

have negative real parts. Rourth –Hurwitz criteria (Flores, 2011) gives necessary and
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sufficient conditions for all the roots of characteristic polynomial and lies on the left

half of the complex plane.

Theorem 3.3: Routh-Hurwitz criteria

Given the polynomial

P (λ∗) = λn∗ + λn−1
∗ B1 + · · ·+ +λ∗Bn−1 + λ∗Bn

where the coefficients Bi are real constants i = 1, . . . , n, define the n Hurwitz matrices

using the coefficients Bi of the characteristic polynomial whereH1=(B1),

H2 =

 B1 1

B3 B2

 ,H3 =


B1 1 0

B3 B2 B1

B5 B4 B3

 ,

,

Hn =



B1 1 0 0 0 . . . 0

B3 B2 B1 1 0 . . . 0

B5 B4 B3 B2 B1 . . . 0

...
...

...
...

... . . . 0

...
...

...
...

... . . . 0

...
...

...
...

... . . . 0

0 0 0 0 0 . . . Bn


where Bj = 0 if j > n, all the roots of the polynomial P (λ∗) are negative if and only if

the determinants of Hurwitz matrices are positive. That is, det(Hj) > 0, j = 1, . . . , n.

For the equation (3.38), when n = 4, the Routhz-Hurwitz criteria are B1 > 0, B2 >
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0, B3 > 0, B4 > 0 and the determinants of Hurwitz matrices are:

det(H1) = B1 > 0

det(H2) =

 B1 1

0 B2

 , B1B2 > 0

det(H3) =


B1 1 0

B3 B2 B1

0 0 B3

 = 0, B1B2B3 −B2
3 > 0

det(H4) =



B1 1 0 0

B3 B2 B1 1

0 B4 B3 B2

0 0 0 B4


= 0, B1(B2B1 −B3)−B4B

2
1 > 0

Clearly, from Hurwitz matrices all the determinants are positive, which means that

all the eigenvalues of the Jacobian matrix have negative real part and therefore disease

free equilibrium point is stable and R0 < 1.

R0 =

√
ωe−λτ θ(1−x)e−λτSm

Nm{[ωe−λτ+(αm+βm+Kx+Ly)](αm+βm+Kx+Ly)}×√
ρe−λτ (1−x)e−λτSh

Nh[(αhβh)+σ(1−z)e−λτ ]
< 1

 (3.40)
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3.9 Endemic Equilibrium Point

To establish the endemic equilibrium point (EEP) of the model we equate the system of

equations (3.2) to zero. That is;

Λh + µRh − αhSh − (γShIm(t−τ)(1−x))
Nh

= 0

γShIm(t−τ)(1−x)
Nh

− ρEh(t− τ)− αhEh(t− τ) = 0

ρEh(t− τ)− (αh + βh)Ih − σ(1− z)Ih(t− τ) = 0

σ(1− z)Ih(t− τ)− αhRh − µRh = 0

− θSmIh(t−τ)(1−x)
Nm

+ Λm − (αm + βm +Kx+ Ly)Sm = 0

θSmIh(t−τ)(1−x)
Nm

− ωEm(t− τ)− (αm + βm +Kx+ Ly)Em = 0

ωEm(t− τ)− (αm + βm +Kx+ Ly)Im = 0



(3.41)

From 7th equation of system of equations (3.41) we have,

I∗m = 0 =
ωE∗m(t− τ)

(αm + βm +Kx+ Ly)
(3.42)

From 6th equation of system of equations (3.41) we have,

E∗m =
θS∗mI

∗
he
−λτ (1− x)

Nm(ωe−λτ + (αm + βm +Kx+ Ly)))
(3.43)

Substituting (3.43) into (3.42) we have

I∗m =
ωe−λτ

(αm + βm +Kx+ Ly)

θS∗mI
∗
he
−λτ (1− x)

Nm(ωe−λτ + (αm + βm +Kx+ Ly)))
(3.44)
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From 5th equation of system of equations (3.41) we have,

S∗m =
NmΛm

Nm [(αm + βm +Kx+ Ly) + θIhe−λτ (1− x)]
(3.45)

Substituting (3.45) into (3.44) we have

I∗m =
(

ωe−λτ

(αm+βm+Kx+Ly)

)(
θI∗he

−λτ (1−x)

Nm(ωe−λτ+(αm+βm+Kx+Ly))

)
(

NmΛm
Nm[(αm+βm+Kx+Ly)+θI∗he

−λτ (1−x)]

) (3.46)

Substituting (3.46) into the 2nd equation of the system of equations (3.41), we have

(
γShe

−λτ (1− x)
Nh(θI

∗
he
−λτ (1− x))

)(
R0m(αm + βm +Kx+ Ly)I∗h

Nm(αm + βm +Kx+ Ly) + θI∗he
(1− x)

)
−(ρ+αh)Eh(t−τ) = 0

(3.47)

From the 3rd equation of the system of equations (3.41) we have,

E∗h =
(αh + βh)I

∗
h + σ(1− z)I∗h(t− τ)

ρ
(3.48)

Substituting (3.48) into (3.47) we have

(
γShe

−λτ (1−x)
Nh(θI∗he

−λτ (1−x))

)(
R0m(αm+βm+Kx+Ly)I∗h

Nm(αm+βm+Kx+Ly)+θI∗he
(1−x)

)
−(ρ+ αh)

(αh+βh)I∗h+σ(1−z)I∗h(t−τ)

ρ
= 0

γShe
−λτ (1−x)R0m(αm+βm+Kx+Ly)I∗h

Nh(αh+βh)e−λτ

−(θI∗he
−λτ (1− x) +Nm(αm + βm +Kx+ Ly)) = 0

Nh ≤ Λh
αh
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R0hR0m(αm + βm +Kx+ Ly)S∗he
−λτ

−(θI∗he
−λτ (1− x) +Nm(αm + βm +Kx+ Ly)) = 0

=⇒ S∗h =
αh(θI

∗
he
−λτ (1− x) + (αm + βm +Kx+ Ly))Λh

R2
0(αm + βm +Kx+ Ly)αh

(3.49)

From the 4th equation of the system of equations (3.41) we have,

R∗h =
σ(1− z)I∗h(t− τ)

(αh + µ)
(3.50)

To solve I∗h, we substitute (3.49) and (3.50), in the 1st equation of the system of equa-

tions (3.41). That is;

Λh + µ
(
σ(1−z)I∗h(t−τ)

(α+µ)

)
− αh

(
αh(θI∗he

−λτ (1−x)+(αm+βm+Kx+Ly))Λh
R2

0(αm+βm+Kx+Ly)αh

)
−
(
γIm(t−τ)(1−x)

Nh

)(
αh(θI∗he

−λτ (1−x)+(αm+βm+Kx+Ly))Λh
R2

0(αm+βm+Kx+Ly)αh

)
= 0

(3.51)

We get

M(I∗h)2 +N(I∗h) + C = 0 (3.52)

Where

M = R2
0T (αm+βm+Kx+Ly)µσ(1− z)I∗hθe

−λτ −θ2σ(1− z)I∗h(τ)(αh+µ)(T +P )

N = R2
0αh(αm + βm +Kx+ Ly)2N2

hαhσ(1− z)I∗hθe
−λτ

−(αm + βm +Kx+ Ly)(γe−λτ (1− x)(αh + µ)T (ΛhR
2
0 − Λh − αhNh)− PΛh)

Q = αh(αm + βm +Kx+ Ly)2N2
hΛh(αh + µ)(R2

0 − 1)
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where,

T = Nhαhγe
−λτ (1− x)

P = (αm + βm +Kx+ Ly)R0mγe
−λτ (1− x)

Using the quadratic formula

I∗h =
−B ±

√
B2 − 4AC

2A

=⇒ I∗h =

√
B2 − 4AC −B

2A
= ψ, I∗h ≥ 0 (3.53)

Using equations (3.49), (3.48),(3.53), (3.50), (3.45), (3.43) and (3.46), we have respect-

ively;

S∗h =
αh(ψθe

−λτ (1− x) + (αm + βm +Kx+ Ly))Λh

R2
0(αm + βm +Kx+ Ly)αh

(3.54)

E∗h =
(αh + βh)ψ + σ(1− z)I∗h(t− τ)

ρ
(3.55)

I∗h = ψ (3.56)

R∗h =
σ(1− z)e−λτψ

(α + µ)
(3.57)

S∗m =
NmΛm

Nm [(αm + βm +Kx+ Ly) + θψe−λτ (1− x)]
(3.58)

E∗m =
θψS∗me

−λτ (1− x)

Nm(ωe−λτ + (αm + βm +Kx+ Ly)))
(3.59)

I∗m =
(

ωe−λτ

(αm+βm+Kx+Ly)

)(
θψe−λτ (1−x)

Nm(ωe−λτ+(αm+βm+Kx+Ly))

)
(

NmΛm
Nm[(αm+βm+Kx+Ly)+θψe−λτ (1−x)]

) (3.60)

3.10 Stability of Endemic Equilibrium Point

The asymptotic stability of the system of equations (3.2) islocally asymptotically stable

established by examining the signs of the eigenvalues obtained at Endemic Equilibrium
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Point (EEP) from the Jacobian matrix. If all the eigenvalues of linearization matrix

about EEP are negative, then the system of equation (3.2) is locally asymptotically

stable.

For stability analysis the equilibrium points of system of equations (3.2) are centered

at EEP E(S∗h, E
∗
h, R

∗
h, S

∗
m, E

∗
m, I

∗
m) by introducing new variables:

A1 = Sh − S∗h, A2 = Eh − E(h)∗, A3 = Ih − I(h)∗,

A4 = Rh −R∗h, A5 = Sm − S∗m, A6 = Em − E∗m, A7 = Im − I∗m
(3.61)

Therefore

Seh = m1 + Sh, E
e
h = m2 + Eh, I

e
h = m3 + Ih, R

e
h = m4 +Rh,

Sem = m5 + Sm, E
e
m = m6 + Em, I

e
m = m7 + Im

(3.62)

We then rewrite the model equation (3.2) in terms of the new variables to get

(Ṡeh) = Λh + µRh − αh(m1 + Sh)− (γShIm(t−τ)(1−x))
Nh

(Ėe
h) = γShIm(t−τ)(1−x)

Nh
− ρ(m2 + Eh)(t− τ)− αh(m2 + Eh)(t− τ)

(İeh) = ρEh(t− τ)− (αh + βh)(m3 + Ih)− σ(1− z)(m3 + Ih)(t− τ)

(Ṙe
h) = σ(1− z)Ih(t− τ)− αh(m4 +Rh)− µ(m4 +Rh)

(Ṡem) = − θSmIh(t−τ)(1−x)
Nm

+ Λm − (αm + βm +Kx+ Ly)(m5 + Sm)

(Ėe
m) = θSmIh(t−τ)(1−x)

Nm
− ω(m6 + Em)(t− τ)− (αm + βm +Kx+ Ly)(m6 + Em)

(İem) = ωEm(t− τ)− (αm + βm +Kx+ Ly)(m7 + Im)


(3.63)

Differentiating the system of equations (3.63) partially with respect to state variables
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we obtain the Jacobian matrix below:

J =



p 0 0 µ 0 0 b

a −c 0 0 0 b

0 e −f 0 0 0 0

0 0 g −h 0 0 0

0 0 −d 0 −r 0 0

0 0 d 0 j −l 0

0 0 0 0 0 m −n



(3.64)

where

a = γIem(t−τ)(1−x)
Nh

b = −γSeh(1−x)e−λτ

Nh

c = −(ρ+ αh)e
−λτ

d = θSem(1−x)e−λτ

Nm

e = ρe−λτ
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f = −(αh + βh)− σ(1− z)e−λτ

g = σ(1− z)e−λτ

h = αh − µ

j =
θI∗h(1−x)e−λτ

Nm

k = θSm(1−x)e−λτ

Nm

l = −ωe−λτ − (αm + βm +Kx+ Ly)

r = − θI∗h(1−x)e−λτ

Nm
− n

m = ωe−λτ

n = −(αm + βm +Kx+ Ly)

p = −αh − γ
Nh

The system of equations (3.63) will be stable if all the eigenvalues of linearization

matrix are negative. The characteristic equation of the Jacobian matrix J is given by:

|J − Iλ∗| = 0

where I is a 7× 7 identity matrix.

[J − Iλ∗] =



p− λ∗ 0 0 µ 0 0 b

a −c− λ∗ 0 0 0 b

0 e −f − λ∗ 0 0 0 0

0 0 g −h− λ∗ 0 0 0

0 0 −d 0 −r − λ∗ 0 0

0 0 d 0 j −l− λ∗ 0

0 0 0 0 0 m −n− λ∗



= 0 (3.65)
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=⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(c+ λ∗) 0 0 b

e −(r + λ∗) 0 0

c j −(l + λ∗) 0

0 0 m −(n+ λ∗)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.66)

Clearly, λ∗1 < 0. Since c, r, l and n are negative we have;

(c+ λ∗)(r + λ∗)(l + λ∗)(n+ λ∗)− bmej = 0 (3.67)

This implies

(λ∗ + A1)(λ∗ + A2)(λ∗ + A3)(λ∗ + A4)−Q = 0 (3.68)

Where Q = bmej by expanding we get,

λ4
∗ + λ3

∗B1 + λ2
∗B2 + λ∗B3 +B4 = 0 (3.69)

where,

B1 = A4 + A3 + A2 + A1

B2 = A4(A3 + A2 + A1) + A3(A2 + A1) + A2A1

B3 = A4A3A2 + A4A3A1 + A3A2A1

B4 = A4A3A2A1 −Q

ThereforeR0 in equation (3.27) can be written in terms ofAi where i = 1, 2, 3, . . . , n

as

R2
0 =

(ωe−λτθ(1− x)e−λτSm)(ρe−λτ (1− x)e−λτSh)

NmNhA3A2A2
1

(3.70)
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Using the Routh-Hurwitz criteria on equation (3.38) we can show that all roots

have negative real parts. Rourth –Hurwitz criteria (Flores, 2011) gives necessary and

sufficient conditions for all the roots of characteristic polynomial and lies on the left

half of the complex plane.

Theorem 3.3: Routh-Hurwitz criteria

Given the polynomial

P (λ∗) = λn∗ + λn−1
∗ B1 + · · ·+ +λ∗Bn−1 + λ∗Bn

where the coefficients Bi are real constants i = 1, . . . , n, define the n Hurwitz matrices

using the coefficients Bi of the characteristic polynomial whereH1=(B1),

H2 =

 B1 1

B3 B2

 ,H3 =


B1 1 0

B3 B2 B1

B5 B4 B3

 ,

,

Hn =



B1 1 0 0 0 . . . 0

B3 B2 B1 1 0 . . . 0

B5 B4 B3 B2 B1 . . . 0

...
...

...
...

... . . . 0

...
...

...
...

... . . . 0

...
...

...
...

... . . . 0

0 0 0 0 0 . . . Bn


where Bj = 0 if j > n, all the roots of the polynomial P (λ∗) are negative if and only if
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the determinants of Hurwitz matrices are positive. That is, det(Hj) > 0, j = 1, . . . , n.

For the equation (3.38), when n = 4, the Routhz-Hurwitz criteria are B1 > 0, B2 >

0, B3 > 0, B4 > 0 and the determinants of Hurwitz matrices are:

det(H1) = B1 > 0

det(H2) =

 B1 1

0 B2

 , B1B2 > 0

det(H3) =


B1 1 0

B3 B2 B1

0 0 B3

 = 0, B1B2B3 −B2
3 > 0

det(H4) =



B1 1 0 0

B3 B2 B1 1

0 B4 B3 B2

0 0 0 B4


= 0, B1(B2B1 −B3)−B4B

2
1 > 0

Clearly, from Hurwitz matrices all the determinants are positive, which means that

all the eigenvalues of the Jacobian matrix have negative real part and therefore disease

free equilibrium point is stable and R0 < 1.

3.11 Sensitivity Analysis of Basic Reproduction Number R0

There are a number of factors responsible for disease transmission and prevalence.

Therefore we need to calculate the sensitivity indices of the reproductive number with
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respect to model parameters. By analysis of these indices we could determine which

parameter is more crucial for disease transmission and prevalence.

R0 =

√
ωe−λτθ(1− x)e−λτSm

Nm {[ωe−λτ + (αm + βm +Kx+ Ly)] (αm + βm +Kx+ Ly)}

√
ρe−λτ (1− x)e−λτSh

Nh [(αhβh) + σ(1− z)e−λτ ]

where, ωe−2λτ

ωe−λτ+(αm+βm+Kx+Ly)
is the probability that a mosquito will survive the ex-

posed state to become infectious and ρe−λτ

(αh+βh)+σ(1−z)e−λτ is the probability that a human

will survive the exposed state to become infectious

Therefore differentiating partially with respect to the reproduction number R0 we

have.
∂R0

∂τ
= ω2λe−3λτ+2ωe−2λτ (αm+βm+Kx+Ly)

[ωe−λτ+(αm+βm+Kx+Ly)]
2

∂R0

∂αm
= ωe−2λτ

[ωe−λτ+(αm+βm+Kx+Ly)]
2

∂R0

∂βm
= ωe−2λτ

[ωe−λτ+(αm+βm+Kx+Ly)]
2

∂R0

∂x
= Kωe−λτ

[ωe−λτ+(αm+βm+Kx+Ly)]
2

∂R0

∂y
= Lωe−λτ

[ωe−λτ+(αm+βm+Kx+Ly)]
2

∂R0

∂ρ
=
−e−λτ [(αh+βh)+σ(1−z)e−λτ ]

[(αh+βh)+σ(1−z)e−λτ ]
2

∂R0

∂αh
= ρe−λτ

[(αh+βh)+σ(1−z)e−λτ ]
2

∂R0

∂βh
= ρe−λτ

[(αh+βh)+σ(1−z)e−λτ ]
2
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CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.1 Introduction

In this chapter, numerical simulations were carried out using MATLAB to verify the

analytic results on the stability of system of equations (3.2) presented in Chapter Three.

The parameter values were obtained from the literature. Analytic solutions on the pre-

vious chapters were clarified through illustrations with specific numerical examples.

4.2 Results and Discussions

Numerical simulations of the model equations were obtained using the list of parameters

as shown in Table 4.1.

Table 4.1: Parameter values of the malaria model

Parameter Value Source
Λh 0.028 per day Chiyaka et al. (2008)
Λm 6 per day Estimated
ρ 1/14 Malaria.com (2011)
αh 0.00004 per day Hyun (2001)
αm 0.04 per day Chiyaka et al. (2008)
βh 0.0004 per day Prince Harvim( 2014)
βm 0.01 per day Chiyaka et al. (2008)
K 1/365 Estimated
L 1/365 Estimated
γ 0.0025 Estimated
µ 0.04 Estimated
ω 1/12 Chiyaka et al. (2008)
θ 0.415 Estimated
σ 0.005 Estimated
λ 0.06 Estimated
x 0.5 Estimated
y 0.5 Estimated
z 0.2 per day Estimated
τ 14 Estimated
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The initial conditions used are: Sh = 300, Eh = 200, Ih = 100, Rh = 50, Sm =

400, Em = 300, Im = 200 and t = 350 days.

Figure 4.1: Simulation of Long Lasting Insecticides Treated Nets (LLINS)

Figure 4.2: Simulation of Long Lasting Insecticides Treated Nets (LLINS)

Figure 4.1 and Figure 4.2 show simulations to determine the effects of Long Lasting
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Insecticides Treated Nets (LLINS). It is evident that when the control strategies are not

used, that is at points x = y = z = 0, the number of infective humans was high,

and when only LLINS(x) was used the number of infective humans and mosquitoes

dropped.

Figure 4.3: Simulation of Indoor Residual Spraying (IRS)
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Figure 4.4: Simulation of Indoor Residual Spraying (IRS)

Figure 4.3 and Figure 4.4 show simulations to determine the effects of Indoor Re-

sidual Spraying (IRS). It is evident that indoor residual spraying reduced the number of

mosquitoes, while it did not have any significance on the infected human population.

Figure 4.5: Simulation of Treatment (with drug)
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Figure 4.6: Simulation of Treatment (with drug)

Figure 4.5 and Figure 4.6 show simulations to determine the effects of treatment

with a drug. It shows that with the use of drugs for treatment of malaria, it reduced

the number of infected humans with time but does not have any effect on the infected

mosquitoes.
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Figure 4.7: Effects of Time delay on Basic Reproduction Number

Figure 4.7 shows a plot of basic reproduction number against time delay. From the

graph, it is evident that the longer the time delay between when mosquito bites and one

becoming sick, the lower the basic reproduction number and vice versa.
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Figure 4.8: Effects of LLINS (x) on Basic Reproduction Number

Figure 4.8 shows a plot of basic reproduction number against LLINS (x). From the

graph, it is clear that as one increase the use of control strategy (LLINS) the infectious

mosquitoes are reduced and subsequently the number of infectious humans reduced and

hence reproduction number also reduced.
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Figure 4.9: Effects of IRS(y) on Basic Reproduction Number

Figure 4.9 shows a plot of basic reproduction number against IRS(y) . From the

graph, it is clear that as you increase the use of IRS(y) the number of mosquitoes who

are infectious reduces and subsequently the reproduction number reduces significantly.

Figure 4.10: Effects of Infection rate (ω) on Basic Reproduction Number
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Figure 4.10 shows a plot of basic reproduction number against the infection rate (ω).

From the graph, it is evident that as progression rate of mosquitoes from exposed class

to infectious class increases, the number of infections increases and the reproduction

number also increases proportionally.

Figure 4.11: Effects of Natural Death rate of Mosquitoes (αm) on
Basic Reproduction Number

Figure 4.11 shows a plot of basic reproduction number against natural death rate

of mosquitoes (αm). From the graph, it is clear that as the rate of natural deaths of

mosquitoes increases,mosquitoes biting rate and transmission reduces and subsequently

reproduction number reduces significantly.

54



Figure 4.12: Effects of Disease-induced Death rate of Mosquitoes (βm) on
Basic Reproduction Number

Figure 4.12 shows a plot of basic reproduction number against disease-induced

death rate of Mosquitoes (βm). From the graph, it is evident that as the number of in-

duced death rate of mosquitoes increases, the number of infectious mosquitoes reduces

and hence infections reduces and subsequently reproduction number reduced.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

In this chapter we present summary of the findings. We also present conclusion and

recommendations and suggestions for future work based on the findings

5.2 Summary

The model formulated is seven dimensional system of equations which considered four

classes of transmission of human hosts and three classes of mosquitoes, SEIR and SEI

respectively. We analyzed the model using delay differential equations because of the

time lag between when a mosquito bites and one becoming sick. Reproduction number

was derived using next generation matrix method and its stability checked by Jacobian

matrix. We showed that the disease free equilibrium is locally asymptotically stable if

R0 < 1 and unstable if R0 > 1.

The numerical analysis of the model shows that use of control measures like the

use of insecticides treated bed nets, indoor residual spraying and use of malaria drugs

for infants and expectant mothers are the most effective measures for controlling mos-

quito spread. Sensitivity analysis was done to find out which parameters influence the

basic reproduction number the most and it was found out that time delay, mosquitoes

infection rate, mosquitoes natural deaths and mosquitoes disease-induced deaths were

most sensitive as seen in Figures 4.7, 4.10, 4.11 and 4.12, respectively. It was realized

that control measures meant to reduce mosquitoes population and reduce human infec-
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tion rate were effective for instance use of treated insecticides bed nets, indoor residual

spraying and use of malaria preventive drugs.

5.3 Conclusions

Deterministic SEIR-SEI model for humans and mosquitoes was developed.The SEIR-

SEI model equations were formulated from the four classes of humans and three classes

of mosquitoes. Delay differential equations were used to analysed the equations.Disease

free equilibrium was attained when R0 < 1.Reproduction number is affected by time

delay, mosquitoes infection rate, mosquitoes natural deaths and mosquitoes disease-

induced deaths and are found to be most sensitive to reproduction number. Therefore

control measures aimed at lowering the infective humans to mosquito vector will greatly

contribute to lowering malaria transmission prevalence. All these can be achieved

through prompt provision of preventive malaria drugs, use of treated bed nets and in-

door residual spraying.

5.4 Recommendations

The model developed recommend that intervention measures be put in place by min-

istry of health for instance use of prophylaxis for infants and pregnant mothers,indoor

residual spraying and long lasting treated bed nets.It is clear that with the use of in-

tervention measures reproduction number was 0.2004 which at this point disease free

equilibrium is stable and malaria transmission is low.The research can be used by pub-

lic health department especially through sensitizing the public on the use of bed nets to

control mosquito bites and even distributing the nets and also spraying insecticides to

remove mosquito infestation which causes malaria.
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5.5 Suggestions For Further Research

The model in our research has not exhausted all the strategies, like developing a mal-

aria vaccine to check on malaria spread. Future models should consider the effects of

environment on the number of infective mosquitoes.
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APPENDICES

A.1: MATLAB Codes

function sol = Mibei_Fig_1_8

global tau

tau = 14;

sol = dde23(@ddes,tau,[300; 1; 1; 0; 300; 1; 1],[0,350]);

figure(1)

plot(sol.x,sol.y(1,:),’k’,sol.x,sol.y(2,:),’b’,sol.x,sol.y(3,:),

’r’,sol.x,sol.y(4,:),’g’,’Linewidth’,1.5)

xlabel(’Time (days)’); ylabel(’Human Population’);

title(’Plot of Human population against time’)

legend(’Susceptible ’,’Exposed ’,’Infectious ’,’Recovered ’)

figure(2)

plot(sol.x,sol.y(5,:),’k’,sol.x,sol.y(6,:),’b’,sol.x,sol.y(7,:),

’r’,’Linewidth’,1.5)

xlabel(’Time (days)’); ylabel(’Mosquito Population’);

title(’Plot of Mosquito population against time’)

legend(’Susceptible ’,’Exposed ’,’Infectious’)

figure(3)

plot(sol.x,sol.y(3,:),’r’,’Linewidth’,1.5)

hold on

plot(sol.x,sol.y(3,:),’b’,’Linewidth’,1.5)
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xlabel(’Time (days)’); ylabel(’Infected Human’);

legend(’x = y = z = 0’,’x = 0.5, y = z = 0’)

figure(4)

plot(sol.x,sol.y(7,:),’r’,’Linewidth’,1.5)

hold on

plot(sol.x,sol.y(7,:),’b’,’Linewidth’,1.5)

xlabel(’Time (days)’); ylabel(’Infected Mosquitoes’);

legend(’x = y = z = 0’,’x = 0.5, y = z = 0’)

figure(5)

plot(sol.x,sol.y(3,:),’r’,’Linewidth’,1)

hold on

plot(sol.x,sol.y(3,:),’b’,’Linewidth’,1)

xlabel(’Time (days)’); ylabel(’Infected Human’);

legend(’x = y = z = 0’,’x = 0, y = 0.5, z = 0’)

figure(6)

plot(sol.x,sol.y(7,:),’r’,’Linewidth’,1.5)

hold on

plot(sol.x,sol.y(7,:),’b’,’Linewidth’,1.5)

xlabel(’Time (days)’); ylabel(’Infected Mosquitoes’);

legend(’x = y = z = 0’,’x = 0, y = 0.5, z = 0’)

figure(7)

plot(sol.x,sol.y(3,:),’r’,’Linewidth’,1)

hold on

plot(sol.x,sol.y(3,:),’b’,’Linewidth’,1)
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xlabel(’Time (days)’); ylabel(’Infected Human’);

legend(’x = y = z = 0’,’x = 0, y = 0, z = 0.2’)

figure(8)

plot(sol.x,sol.y(7,:),’r’,’Linewidth’,1)

hold on

plot(sol.x,sol.y(7,:),’b’,’Linewidth’,1)

xlabel(’Time (days)’); ylabel(’Infected Mosquitoes’);

legend(’x = y = z = 0’,’x = 0, y = 0, z = 0.2’)

%===============================================

function dydt = ddes(t,v,Z)

global tau

% Parameters:

Lambda_h=0.028;Lambda_m=6;alpha_h=0.00004;alpha_m=0.04;

beta_h=0.0004;beta_m=0.01;gamma=0.25;theta=0.415;rho=1/14;

omega=1/12;sigma=0.005;mu=0.04; K=1/365; L=1/365;

lambda=0.06; x=0.5;y=0.5;z=0.2;

% Variable names used in stating the DDEs:

Sh = v(1); Eh = v(2); Ih = v(3); Rh = v(4); Sm = v(5);

Em = v(6); Im = v(7);

vlag = Z(:,1); % Z(:,1) corresponds to the lag tau.

Nh = Sh + Eh + Ih + Rh; Nm = Sm + Em + Im;

dShdt = Lambda_h+mu*v(4)-alpha_h*v(1)-((gamma*v(1)*

vlag(7)*(1-x))/Nh);

dEhdt = ((gamma*v(1)*vlag(7)*(1-x))/Nh)-rho*vlag(2)-
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alpha_h*vlag(2);

dIhdt = rho*vlag(2)-(alpha_h+beta_h)*v(3)-sigma*

(1-z)*vlag(3);

dRhdt = sigma*(1-z)*vlag(3)-alpha_h*v(4)-mu*v(4);

dSmdt = -((theta*vlag(3)*v(5)*(1-x))/Nm)+Lambda_m-

(alpha_m+K*x+L*y)*v(5);

dEmdt = ((theta*vlag(3)*v(5)*(1-x))/Nm)-omega*vlag(6)-

(alpha_m+K*x+L*y)*v(6);

dImdt = omega*vlag(6)-(alpha_m+beta_m+K*x+L*y)*v(7);

dydt = [dShdt; dEhdt; dIhdt; dRhdt; dSmdt; dEmdt; dImdt];

%....................................................

R0=(omega*exp(-lambda*tau))/(alpha_m+beta_m+K*x+L*y)
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Abstract: Malaria is one of the major causes of deaths and ill health in endemic regions of sub-Saharan Africa and beyond 

despite efforts made to prevent and control its spread. Epidemiological models on how malaria is spread have made a 

substantial contribution on the understanding of disease changing aspects. Previous researchers have used Susceptible –

Exposed-Infectious-Recovered (SEIR) model to explain how malaria is spread using ordinary differential equations. In this 

paper we develop mathematical SEIR model to define the dynamics of the spread of malaria using Delay differential equations 

with four control measures such as long lasting treated insecticides bed nets, intermittent preventive treatment of malaria in 

pregnant women (IPTP), intermittent preventive treatment of malaria in infancy (IPTI) and indoor residual spraying. The 

model is analyzed and reproduction number derived using next generation matrix method and its stability is checked by 

Jacobean matrix. Positivity of solutions and bounbedness of the model is proved. We show that the disease free equilibrium is 

locally asymptotically stable if R0<1 (R0 – reproduction number) and is unstable if R0>1. Numerical simulation shows that, 

with proper treatment and control measures put in place the disease is controlled. 

Keywords: Stability, Basic Reproduction Number, Delay Differential Equations 

 

1. Introduction 

Malaria is one of the most pandemic disease that remains 

arguably the greatest threat in our society and has remained 

the main cause of deaths in Africa and many regions of the 

world. Malaria was a major bottleneck in military camps in 

the United States where they initiated malaria campaigns to 

control the menace. In 2015 World Health organization 

(WHO) estimate on the cases of malaria to be 214 million 

resulting in 438,000 deaths, majority of these were from 

Africa. Sub-Saharan Africa continues to exhibit a 

considerably high number of epidemics of malaria which 

results to many deaths. Furthermore, WHO (2016) estimates 

that there were 216 million quantifiable cases of malaria and 

445,000 people perished of whom 306,000 were children 

under 5 years and were mainly from Africa [1, 2]. 

Malaria is transmitted by Plasmodium parasite. One gets 

malaria by being bitten by infected female anopheles 

mosquito. The mosquito must have been infected from blood 

meal of infected persons. Blood of infected person has 

microscopic malarial parasite that can be passed onto a 

mosquito when it bites such an individual. The malarial 

parasite incubates for about seven days after which it 

becomes infectious and if a mosquito bites a new individual 

again the parasite from the blood meal will mix with 

mosquito’s saliva and can be transmittable to the person 

being bitten. Malaria symptoms appears within 9-14 days. 

The most common symptoms are headache, fever and 

vomiting. Other ways through which malaria can be spread is 

by blood transfusion or sharing used needles or syringes of 

the blood which is contaminated. Also delivery or before 

delivery of the new born baby, the mother may pass over the 

disease to the baby. Severe malaria can lead to cerebral 

malaria, which is associated with unconsciousness, seizures, 

or other neurologic anomalies. Risks associated with malaria 

in expectant mothers include maternal anaemia, low weight 

in infants, immature delivery and increased infant and 
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maternal deaths [14]. The prevalence of malaria has been on 

the rise owing to malaria parasite developing resistance to 

drugs, mosquito-insecticide resistance and weak malaria 

intervention measures [3, 9]. This therefore warrants efficient 

and effective control measures on the spread of malaria 

through mathematical modelling. SEIR differential model for 

humans and SEI for mosquitoes was developed to study the 

dynamics of spread of malaria and incorporate Preventive 

measures. For instance, intermittent preventive treatment of 

malaria in pregnant mothers, Long- Lasting Insecticides 

Treated Nets (LLINS), indoor residual spraying (IRS). 

2. Review of Related Literature 

Jessica [7] studied malaria spread dynamics for humans 

and mosquito populations by considering vectorial 

transmission, vertical transmission of disease and a force of 

infection which measure the influence that occurs in the 

disease transmission rate which an infected human is 

introduced into mosquito population. The study examine a 

SEIR model for humans and SIR model for mosquitoes and 

fail to incorporate preventive and control measures to reduce 

malaria prevalence. In the analysis revealed the existence of 

three steady states, the disease free equilibrium and two 

endemic equilibrium and that when �� < 1, then disease is 

controlled and when �� > 1, the disease persists. In the study 

ordinary differential equations were used, which in this paper 

is addressed by introducing delay differential equations to 

cater for latency period that take place between when a 

mosquito bites and human becoming infected. 

Sunita [5], Studied SEIR model for human and SI model 

for mosquito population. SEIR model took into account new 

immigrants in the population who are susceptible, exposed 

and infective. 

Impressed by Sunita’s work [5], Nisha [12] analysed the 

steadiness of SEIR model for malaria with infectious 

migrants but failed to carry out simulation and sensitivity 

analysis of the given model which was necessary so as to 

understand the effect of infective immigrants on the spread of 

malaria in a population. Similar studies were carried by 

Mojeeb [9] who used a SEIR mathematical model using 

ordinary differential equations with four control measures 

such as reducing contact rate between human and mosquito’s, 

reducing the infection rate between humans, use of active 

malaria drugs and treated mosquito nets. 

Ephraim [10] studied the dynamics of several species and 

strains of malaria. In the model analyzed four species of the 

malaria parasite and found out that some species of the 

parasite have evolved into strains that are resistant to 

treatment, he made assumption that there was no immunity to 

disease. The model found out that all species or strains 

persist for some time for the reproduction number greater 

than one, however the species or strain with the highest 

reproduction number eventually displace the others. In the 

model did not consider factors such as seasonality, age 

structure of humans and mosquitoes’ incubation period and 

spatial distribution. 

From the above literature malaria transmission was 

modelled using ordinary differential equation. In this paper 

we have modelled the spread of malaria using delay 

differential equations because of time lags between when a 

mosquito bites and one becoming sick. We have incorporated 

four control measures so as to control the spread. 

2.1. The Method of Solution 

In this section we formulate the model, generate the model 

equations, and find the reproduction number and study 

existence of disease free equilibrium and its stability. 

2.2. The Model 

In this model, the variables h and m denotes humans and 

mosquitoes population respectively and t is time. 

The SEIRS model is used to develop human population 

and the sum of the entire population is given as: ��=	� + �� + �� + �� 

Where; subscripts h-represents human population N� − total human populatio� 	�-susceptible humans ��-exposed humans ��-infectious humans ��-recovered humans respectively. 

Similarly, Susceptible-Exposed-Infected (SEI) model is 

used to develop mosquito population and the Sum total of 

population is given as; ��=	�+��+�� 

Where; subscript m-represents mosquito population N� − total mosquito population 	�-susceptible mosquitoes ��-exposed mosquitoes ��-infectious mosquitoes 

Some of the assumptions of our model include;  !" Mosquito will die after infection  !!" The rate at which humans and mosquito enter the 

population and die are respectively given by ∧� ,  ∧�  and $� , $� ,  !!!"  The rate at which human and mosquito die from 

disease induced deaths are respectively given as %� ,%�  !&"  Individuals are allowed to move from susceptible 

human population to the exposed human population at a rate 

which is proportional to both size of susceptible human 

population and infected mosquito population and inversely 

proportional to total human population 
'()*+,)   &"  Members of exposed class ( ��)  move to infected 

human class (�� ) at a rate proportional to the number of 

individuals in the exposed class,.��,  &!" Individuals in the infected class move to recovered 

class at a rate proportional to the number of individuals in the 

infected class, /��.  &!!" Individuals in the recovered class move to susceptible 

class at a rate proportional to size of individuals in the 

recovered class,0��. 
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 &!!!" For mosquito population, susceptible mosquitoes 

move to exposed class at a rate 
1(+2),)   !3" Mosquitoes in the exposed class move to infectious 

class at the rate proportional to the size of individuals in the 

exposed mosquito population 4�� 

2.3. Model Formulation 

 
Figure 1. Human-mosquito flow diagram. 

2.4. Model Equations 

From the assumptions made, the following are equations from the model: 

56)57 8 Λ� 
 0�� �  $�	� � '()*+:7;<-:=;>-,)5?)57 8 '()*+:7;<-:=;>-,) � .��:@ � A- � $���:@ � A-
5*)57 8 .��:@ � A- � :$� 
 %�-�� � /:1 � B-��:@ � A-5C 57 8 /:1 � B-��:@ � A- � $��� � 0��5(+57 8 � 1*):7;<-(+:=;>-,) 
 Λ� � :$� 
 %� 
 D3 
 EF-	�5?+57 8 1(+*):7;<-:=;>-,+ � 4��:@ � A- � :$� 
 %� 
 D3 
 EF-��5*+57 8 4��:@ � A- � :$� 
 %� 
 D3 
 EF-�� GH

HH
HI
HHH
HJ

                                               (1) 

2.5. Positivity of Solutions 

The following theorem is used in determining positivity of 

our solutions. 

Theorem 

Let the initial data be 

K:	�:0-, 	�:0- M 0, :��:0-, ��:0-, ��:0-, ��:0-, ��:0-N 

Then the solution K	�, �� , �� , ��, 	�, �� , ��N:@- 
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Of the system is non-negative for all t ≥ 0 

Proof 

From the system of equation (1) in the model O	�O@ = Λ� + 0�� − $�	� − P	���:@ − A):1 − 3)��  

≥ −$�	� − P	���:@ − A):1 − 3)��  

5()57 ≥ −:$� + '*+:7;<):=;>),) )	�          (2) 

Using separation of variables and integrating both sides 

Q 1	� O	� ≥ − Q R$� + P��:@ − A):1 − 3)�� S O@ 

T�	� ≥ −:$� + P	���:@ − A):1 − 3)�� + U 

	�:@) = V;:$� + P��:@ − A):1 − 3)@ × VX       (3) 

Let VX = D 	�:@) = V;:$� + P��:@ − A):1 − 3)@ × D 	�:@) = DV;:$� + P��:@ − A):1 − 3)@ (4) 

When @ = 0, 	�:0) ≥ Y 	�:@) ≥ 	�:0)V;:$� + P��:@ − A):1 − 3)@ ≥ 0 

From the second equation of system of equation (1) O��O@ = P	���:@ − A):1 − 3)�� − .��:@ − A) − $���:@ − A) 

5?)57 ≥ −:. + $�)��:@ − A)                    (5) 

Integrating both sides we have 

Q 1�� O�� ≥ − Q −:. + $�):@ − A)O@ 

T��� ≥ −:.:@ − A) + $�:@ − A)@ + U ��:@) = V;:.:@ − A) + $�:@ − A)@ × VX           (6) 

Let VX = D 

When @ = 0, ��:0) ≥ VX ��:@) ≥ ��:0) V;:.:@ − A) + $�)@ ≥ 0           (7) 

Similarly, it can be shown that the remaining equations of 

the model are positive for all @ > 0,  because Vℵ > 0,  for 

all ℵ ∈ ℝ. 

Therefore our model has positivity of solutions. 

2.6. Reproduction Number ]^ 

Basic reproduction number is defined as expected number 

of secondary cases produced by a single infection in a 

completely susceptible population i.e. it is a measure of how 

fast a disease spreads through a population  3". �` Is obtained by taking the largest dominant Eigen value 

of ab;= or spectral radius of ab;= 

Let a = cde?fc>g  and b = che?fc>g  and �` − Disease free 

equilibrium ai − Is the rate of appearance of new infections in 

compartment i bij −is the transfer of individuals into compartment i bi; −is the transfer of individuals out of compartment i ki = li;:3) − lij:3) 

From the system of equation (1) we obtain ai as, 

ai =
mnn
no'()*+:7;<):=;>),)01(+*):7;<):=;>),+0 pqq

qr
                                (8) 

Taking partial derivatives of sais�� , sais�� , sais�� , sais�� 

To get 

a =
mnn
nno0 0 0 '():=;>)tuvw,)0 0 0 000 1(+:=;>)tuvw,+0 00 00 pqq

qqr            (9) 

Also from system of equation (1) we obtain bi as 

bi = mnn
o :. − $�)��:@ − A):$� + %�)�� + /:1 − B)��:@ − A) − .��:@ − A)4��:@ − A) + :$� + %� + Y3 + TF)��:$� + %� + Y3 + TF)�� − 4��:@ − A) pqq

r  (10) 

Taking partial derivatives of sbis��  sbis��  sbis��  sbis�� 

b = mnn
no:. − $�)V;x< 0  0  0−.V;x< :$�+%�) + /:1 − B)V;x< 0 000 00 4V;x< + :$� + %� + Y3 + TF)−4V;x< 0:$� + %� + Y3 + TF)pqq

qr
      (11) 

Let y = :. − $�)V;x< 
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z 8 �.V;x< { 8 :$�
%�- 
 /:1 − B)V;x< | = 4V;x< + :$� + %� + Y3 + TF) � = −4V;x< a = :$� + %� + Y3 + TF) 

Then, b;= =
mn
nn
no =} 0 0 0;~}� =� 0 0

00 00
=�;?�d

0=dpq
qq
qr
                                                                          (12) 

And so, 

ab;= =
mnn
nno 0 0 − ?'():=;>)tuvw,)�d  '():=;>)tuvw,)d  0 0 0 0;~1(+::=;>)tuvw,+}�0

1(+::=;>)tuvw,+�0 00 00 pqq
qqr                            (13) 

Let 

a=− ?'():=;>)tuvw,)�d  

b=
'():=;>)tuvw,)d  

c=
;~1(+::=;>)tuvw,+}�  

d=
1(+::=;>)tuvw,+�  

Then (13) becomes, 

ab;= = �0 0 � � 0 0 0 0U0 O0 00 00�                        (14) 

then the characteristic equation of (14) is given by, |ab;= −  ��| = 0 

Which implies that, 

�−� 0 � �0 − � 0 0U0 O0 −�0 0− � � = 0                (15) 

Therefore 

−� �−� 0 �0 −� 0U O −�� + �:0) − �:0) = 0      (16) 

��:�� − �U) = 0 

�� = 0 �� �� = �U, ⟹  � = ±√�U             (17) 

The dominant Eigen value or reproductive ratio is � = √�U 

Therefore, 

�` = � �tuvw():=;>)tuvw,):��tuvwj:�+j�+j�>j��)�:�+j�+j�>j��)) ×
 � �tuvw1(+::=;>)tuvw,+::�)j�))j�:=;�)tuvw))                   (18) 

2.7. Existence of Disease Free Equilibrium 

In the absence of disease in the population we have; :��, = �� =, �� = �� = 0 = ��). 

Here,�� = 0 since there will be no disease to recover from, 

hence from the system of equation :1) we have, 

Λ� + 0�� − $�	� − '()*+:7;<):=;>),) = 0         (19) 

− 1*):7;<)(+:=;>),) + Λ� − :$� + D3 + EF)	� = 0 (20) 

Since �� = 0 in (19) 

We have, 

	� = Λ�$� 

Since �� = 0 in (20) then, 

�+�+j�>j�� = 	�                              (21) 

Similarly, when  :��, = �� =, �� = �� = 0 = �� ) in the 
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remaining equations becomes 

��̀ 8 0, , ��̀ = 0, , ��̀ = 0, , 	�̀ = �+�+j�>j�� , ��̀ = 0, ��̀ = 0 (22) 

Where E�̀ , -at disease free equilibrium and likewise  I�̀, , R�̀, , S�̀, E�̀ and, I�̀ respectively 

Therefore disease free equilibrium point of our malaria 

model is given by 

�0 = :	ℎ0, �ℎ0, �ℎ0 , �ℎ0, 	£0 , �£0 , �£0 ) = :Λℎ$ℎ , 0,0,0 Λ£$£+Y3+TF, 0, 0) 

This is the state where there is no malaria in the population. 

2.8. Stability of Disease Free Equilibrium 

The stability of the disease free equilibrium state can be 

tested using Eigen values of a jacobian matrix obtained at 

DFE, this is where �¤ < 1 . The linearization matrix of 

system of equation (1) at disease free equilibrium is given by 

¥ =

mn
nn
nn
nn
nn
o−$� 0 0 0 0 0 −P 6):=;>)tuvw,)0 −.V;x< − $�V;x< 0 0 0 0 P 6):=;>)tuvw,)0 .V;x< −:$� + %�) − /:1 − B)V;x< 0 0 0 00 0 /:1 − B)V;x< −$� − 0 0 0 00 0 − 16+:=;>)tuvw:�+j�>j��),+ 0 −$� − %� − Y3 − TF 0 0

0 0 16+:=;>)tuvw:�+j�>j��),+ 0 0 −4V;x< − $� − %� − Y3 − TF 00 0 0 0 0 4V;x< −$� − %� − Y3 − TFpq
qq
qq
qq
qq
r

 (23) 

The system of equation  1" is stable if all the Eigen values 

of linearization matrix are negative. 

In solving the eigen values we let, 

a=− $�, b=−P 6):=;>)tuvw,) , c=−.V;x< − $�V;x<, 

d=P 6):=;>)tuvw,) , e=.V;x< 
 

f=−:$� + %�) − /:1 − B)V;x<
, g=/:1 − B)V;x<

, h=−$� − 0, 

i=− 16+:=;>)tuvw,+ , j=−$� − %� − Y3 − TF 

k=
16+:=;>)tuvw,+ , l=−4V;x< − $� − %� − Y3 − TF, m=4V;x<, 

n=−$� − %� − Y3 − TF 

Solving the eigen values of the jacobian matrix |J − λI| = 0 

�U + � 0 0 OV ¨ +  � 0 0U0 Y0 T + �£ 0� +  � � = 0           (24) 

We have :U + �):� +  �):¨ + �):T +  �) − O£VY = 0      (25) 

To simplify the equation (25) 

Let y= = �, y� = T, y© = ¨, yª = U ��O « = O£VY 

This implies :� + y=): � + y�):� + y©): � + yª) − « = 0      (26)  �ª +  �©z=+ ��z� + �z© + zª = 0           (27) 

Where, z= = yª+y© + y�+y= 

z� = yª:y© + y�+y=) + y©:y�+y=) + y�y= z© = yªy©y�+yªy©y= + +y©y�y= zª = yªy©y�y= − « 

Therefore �` in equation (18) can be written in terms of yi 
where i=1,2,3,----n 

As 

��̀ = :�tuvw1::=;>)tuvw(+):�tuvw:=;>)tuvw()),+,)}¬}}®          (28) 

Using the Routh-Hurwitz criteria on equation (27) we can 

show that all roots have negative real parts. 

Routh –Hurwitz criteria 15" gives necessary and sufficient 

conditions for all the roots of characteristic polynomial and 

lies on the left half of the complex plane. 

Theorem 2.8 Routh-Hurwitz criteria. 

Given the polynomial °:�) = �±+�±;=z= + − − +�z±;= + z± 

Where the coefficients zi  are real constants ! = 1, − − −�, 
define the � Hurwitz matrices using the coefficients zi  of the 

characteristic polynomial 

Where ²= = :z=), ²� = ³z= 1z© z�´ , ²© = µz= 1 0z© z� z=z¶ zª z©· , 

²± =
mnn
nnn
noz= 1 0 0 0 ′ 0z© z� z= 1 0  ′ 0z¶ zª z© z� z= ′ 0′ ′ ′ ′ ′ ′ 0′ ′ ′ ′ ′ ′ 0′ ′ ′ ′ ′ ′ 00 0 0 0 0 ′ z±pqq

qqq
qr
 

Where z¹ = 0  if º > �, all the roots of the polynomial °:�) are negative if and only if the determinants of Hurwitz 

matrices are positive 
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det¼²¹½ � 0, º 8 1,2 � � � � 

For the equation (27), when n=4, the Routh-Hurwitz 

criteria are z= � 0, z� � 0, z© � 0, z© � 0  and the determinants of 

Hurwitz matrices are: det:²=- 8 z= � 0 

det:²�- 8 ³z= 10 z�´ , z= z� � 0 

det :²©- 8 µz= 1 0z© z� z=0 0 z©· 8 0, z=z�z© � z©� � 0 

det :²ª- 8 �z= 1 0 0z© z� z= 100 zª0 z©0 z�zª �8 0, z=:z�z= � z©- � zªz=� � 0 

Clearly, from Hurwitz matrices all the determinants are 

positive, which means that all the Eigen values of the 

jacobian matrix have negative real part. Moreover, if �` � 1, 

it follows that from (28) that yi � 0 and therefore disease 

free equilibrium point is stable when �` � 1. 

3. Numerical Simulations and Results 

The simulations were performed using MATLAB’S built 

in dde 23 solver. In the analysis, initial population sizes and 

other parameters were obtained from literature as shown 

from the table below. 

Table 1. Description of variables and parameters of malaria model. 

PARAMETER VALUE REFERENCE Λ� 0.028 per day Chiyaka et al (2008) Λ� 6 Estimated . 1/14 Malaria.com (2011) $� 0.00004 per day Hyun (2001) %� 0.0004per day Prince Harvim (2014) %� 0.01 per day Chiyaka et al (2008) $� 0.04 per day Chiyaka et al (2008) 

Z 0.2 per day Estimated 
K 1/365 Estimated 

L 1/365 Estimated P 0.0025 Estimated 0 0.04 Estimated 4 1/12 Chiyaka etal (2008) ¿ 0.0415 Estimated / 0.005 Estimated � 0.06 Estimated 3 0.5 Estimated F 0.5 Estimated 

The initial conditions used are: 	 � 8 300,�� 8 200, �� 8 100, �� 8 50, 	� 8 400, �� 8300, �� 8 200 t=350 days 

Numerical simulation. 

 

Figure 2. Shows human population against time in days. 

From the graph it shows that the number of infective 

humans reduces considerably because of the use of control 

strategies, while the number of humans susceptible also 

increases because the disease is under control. 

 

Figure 3. Shows mosquito population with time. 

From the figure it is evident that the number of infective 

mosquitoes went down significantly with time as a result of a 

combination of control strategies and treatment used, while 

those exposed to disease dropped significantly. 
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Figure 4. Simulation of Long Lasting Insecticides Treated Nets (LLINS). 

From figure 4. above when the contol strategies are not 

used x=y=z=0 the number of infective humans was high, and 

when only LLINS (x) was used the number of infective 

humans and mosquitoes dropped. 

 

 

Figure 5. Simulation of Indoor Residual Spraying (IRS). 

Figure 5 From the above figure it is evident that indoor 

residual spraying reduced the number of mosquitoes, while it 

didn’t have any impact on infected human population 

 

 

Figure 6. Simulation ofTreatment (with drug). 

From figure 6. It shows that with the use of drugs for 

treatment of malaria, it reduced the number of infected 

humans with time. 

4. Conclusion 

From the study, SEIR and SEI model for humans and 

mosquitoes were used to study malaria transmission 

dynamics. The model is achieved with control strategies such 

as; use of long lasting treated bed nets (LLINS), indoor 

residual spraying, intermittent preventive treatment for 

infants and pregnant mothers. 

The model equations generated were used to calculate 

reproduction number using the next generation matrix. From 

the results it was found out that when �` � 1 the model was 

locally stable and the disease was controlled and when �` � 1, the disease persists because number of infective 

humans increased. 

Therefore with the combination of control strategies and 

treatment, the malaria spread is put on control. 
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5. Future Research and Suggestions 

The model in our research has not exhausted all the 

strategies, like developing a malaria vaccine to check on 

malaria spread. Future model should be developed to include 

the effects of environment on the number of infective 

mosquitoes. 
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