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Abstract

Psoriasis is a common chronic inflammatory skin disease that
is differentiated by repeated occurrences of raised scaly and red
skin plaques. It is generated through several applications of drugs,
strains, physical wounds to the skin and also for infectivity. Psoria-
sis is identified by composite interactions of T-Cells, Dendritic Cells,
Cytokines and downstream transcription factors (type 1 Cytokines
network). The effects of T-Cells in dermal layer (CD4+ T-Cells)
are well-studied in the disease dynamics of Psoriasis from mathe-
matical as well as biological context. But the concept of T-Cells
in epidermal layer (CD8+ T-Cells) for disease progression of Psori-
asis has not yet been explored till now from mathematical avenue.
Here we introduce both CD4+ and CD8+ T-Cell, Dendritic Cell
and Keratinocyte population to notice the impact of them on im-
munopathogenic cell-biological mechanism of Psoriasis. Numerical
simulation is also furnished to establish the analytical outcomes.
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Effect of CD4+ T-Cells and CD8+ T-Cells on
Psoriasis: A mathematical study

Abhirup Datta, Dipak Kumar Kesh and Priti Kumar Roy

Abstract. Psoriasis is a common chronic inflammatory skin disease that is differentiated by
repeated occurrences of raised scaly and red skin plaques. It is generated through several
applications of drugs, strains, physical wounds to the skin and also for infectivity. Psoriasis is
identified by composite interactions of T-Cells, Dendritic Cells, Cytokines and downstream
transcription factors (type 1 Cytokines network). The effects of T-Cells in dermal layer
(CD4+ T-Cells) are well-studied in the disease dynamics of Psoriasis from mathematical as
well as biological context. But the concept of T-Cells in epidermal layer (CD8+ T-Cells)
for disease progression of Psoriasis has not yet been explored till now from mathematical
avenue. Here we introduce both CD4+ and CD8+ T-Cell, Dendritic Cell and Keratinocyte
population to notice the impact of them on immunopathogenic cell-biological mechanism of
Psoriasis. Numerical simulation is also furnished to establish the analytical outcomes.

Mathematics Subject Classification (2010). 34A08, 34K37, 37N25, 92B05, 92C37.

Keywords. T-Cells, Dendritic Cells, CD4+ T-Cells, CD8+ T-Cells, Keratinocytes, Dermal
layer, Epidermal layer, Cytokines.

1. Introduction

A number of histological transformations can be noticed for increasing of lesions for Psoriasis:
(1) a condensed epidermis (acanthosis) occurring from immediate proliferation of Keratinocyte,
(2) for the unusual separation of Keratinocytes, granular stratum is decreased or not present
(hypogranulosis) and preservation of nuclei by corneocytes is occurred (parakeratosis), (3) in
the papillary dermis, noticeable dilation of blood vessels reasoning observable erythema and
last of all (4) a thick inflammatory penetration, composed of groups for CD4+ T helper Cells
and DCs in the dermis and CD8+ T-Cells and neutrophils in the epidermis [1]. In autocrine
or paracrine mode, Cytokines usually intervene connections between cells that are in close im-
mediacy by means of involvement for explicit receptors performance. Cytokines are normally
capable to manipulate the proliferation, differentiation or discharge of pro-inflammatory or
anti-inflammatory aspects by resident and employed cells [2]. IL-22 is almost certainly and
extremely over expressed for up regulated IL-23 and IL-6 stages in Psoriasis [3], [4]. The ca-
pability of Cytokine IFN-γ is to capture the refined Keratinocytes proliferation intensely and
unpredictably. It is done by controlling of recombinant human IFN-γ to the Psoriasis patient
systemically [5]. TNF-α fabricating cells are assumed to persuade the adjoining endothelial cells
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2 Abhirup Datta, Dipak Kumar Kesh and Priti Kumar Roy

to manufacture bond molecules such as endothelial cell leukocyte bond molecule 1, vascular cell
bond molecule 1 and intercellular bond molecule. It is furnished to speedily endorse the staffing
of leukocytes into the skin and also to force epidermal Keratinocytes to produce chemotactic
polypeptides such as IL-8. Leukocytes via intercellular adhesion molecule 1 are also kept [6].
Neutrophil attracting CXC chemokines are created by Keratinocytes, which are motivated by
means of a potent pro-inflammatory Cytokine IL-17 [7], [8]. IL-17 may stimulate fibroblasts
to generate Cytokine IL-6, which assigns naive T-Cells to Th 17. A positive feedback loop is
activated potentially that enables Th17 inflammation [9]. Inside the epidermis, CD8+ T-Cells
constructing IL-17 have been recognized [10].

Roy and Bhadra prepared the basic mathematical model of the skin disease Psoriasis [11].
They also analyzed a comparative study for suppression on T-Cells and DCs individually and
attained the better outcomes for suppression made on DCs [12]. Next, Roy and Datta expanded
the mathematical model of Psoriasis introducing the half-saturation constant [13] and negative
feedback control approach in delay induced system [14]. They also examined the effect of Cy-
tokines network in the cell-biological structure of Psoriasis [15] and also the presence of CD8+

T-Cells [16] was incorporated by Roy et al. in this disease dynamics of Psoriasis. Interaction
between T-Cells and DCs and also interaction between T-Cells and Keratinocytes help to form
Keratinocytes, whose excess production generates Psoriasis. From mathematical point of view,
the research works regarding the cell-biological system of the disease Psoriasis were done re-
lated to the growth of Psoriasis but not on the persistence of Psoriasis. In our present research
article, we generate the new concept of survival of the disease. The impact of T-Cells in der-
mal layer generally Th 1 CD4+ T-Cells was considered in all the previous research articles
on mathematical approaches for Psoriasis. The notion of epidermal T-Cells essentially CD8+

T-Cells in cell-biology of Psoriasis has not yet been properly investigated till now from mathe-
matical aspect. For that reason, we introduce four type of cell populations CD4+ T-Cell, DC,
CD8+ T-Cell and Keratinocyte. Mainly, CD4+ T-Cells are one of the factors for the growth of
Psoriasis. But CD8+ T-Cells in the epidermal layer are responsible for the persistence of the
disease. At first, there is a interaction between CD4+ T-Cells and DCs in the dermis. Another
interaction of CD4+ T-Cells with Keratinocytes occurs in the dermal phase. Next with help
of various Cytokines network, the effects of the interactions come into the epidermis layer. Fi-
nally, Keratinocytes produced in the epidermis stage are one of the major causes to generate
and persist the chronic disease Psoriasis. In this research article, we are interested to notice the
effect of CD8+ T-Cells along with CD4+ T-Cells in the growth as well as consistence of the
disease Psoriasis.

2. The Basic Assumptions and the Formulation of the Mathematical Model

We consider the mathematical model of chronic skin disease Psoriasis, where there are four
different types of cell population, introduced into the model system: lD(t) is T-Cell density in
dermal layer (mainly Th 1 CD4+ T-Cells), m(t) is Dendritic Cell density, lE(t) is epidermal
T-Cell (mainly CD8+ T-Cells) density and k(t) is Keratinocyte density at time t. Here the con-
stant rates of accumulation of T-Cells and Dendritic Cells are assumed by a and b respectively.
Also the accumulation rate of resident T-Cells in secondary lymphatic organs is denoted by
c. Again, ξ1 is the activation rate of CD4+ T-Cells by DCs and ξ2 is the rate of activation of
DCs by CD4+ T-Cells. Further, the activation rate of Keratinocytes by CD4+ T-Cells due to
T-Cells mediated Cytokines is considered as η1 and also β1 is the rate of activation of CD8+

T-Cells by DCs. Here the rate of migration of dermal layer T-Cells to epidermis is regarded
as δ under the action of IL-6 and IFN-γ released by T-Cells themselves, which cause further
stimulation of DCs and also β2 is the rate of proliferation of epidermal T-Cells. Moreover, α1 is

Imhotep Proc.
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the rate of proliferation of epidermal T-Cells by activated Keratinocytes and the rate of activa-
tion of epidermal T-Cells by Keratinocytes under the influence of IL-8 is assumed as α2. Here
η2 is the rate of further immigration of dermal T-Cells to epidermis guided by Keratinocytes
and mediated by IL-8 and IL-20. Furthermore, λ1 is the rate of proliferation of Keratinocytes
mediated by Cytokines released from epidermal T-Cells like IL-17, IL-20 and also the rate of
proliferation for Keratinocytes mediated by Cytokines released from Keratinocytes themselves
is considered as λ2. Finally, the per capita removal rates of CD4+ T-Cells and CD8+ T-Cells
are denoted by µ1 and µ3 respectively and further µ2 and µ4 are the per capita removal rates
of Dendritic Cell and Keratinocyte population. All the above mentioned parameters are always
positive.

Assembling together the above assumptions, we may formulate the mathematical model of the
disease Psoriasis given below:

dlD
dt

= a− ξ1lDm− η1lDk − µ1lD,

dm

dt
= b− ξ2lDm− β1lEm− µ2m,

dlE
dt

= c+ δlDm+ β2lEm+ α1lE + η2lDk − µ3lE ,

dk

dt
= λ1lDk + λ2lEk − α2lE − µ4k, (1)

where lD(0) > 0, m(0) > 0, lE(0) > 0 and k(0) > 0 at a specific time period t.

3. Theoretical Analysis of the Dynamical System

3.1. Existence, Uniqueness and Boundedness of the System

The right hand sides of system of equations (1) are smooth functions of the variables lD, m,
lE and k and also the parameters, given that these quantities are always non-negative. Hence-
forth, the local existence, uniqueness and boundedness of the system dynamics are guaranteed
in the positive octant. In the following theorem, we will exemplify that the linear combination
of CD4+ T-Cells, Dendritic Cells, CD8+ T-Cells and Keratinocytes concentrations is less than a
pre-assumed quantity. Alternatively, we can conclude that the solution of the dynamical system
is bounded.

THEOREM 3.1. The solution x(t) of the system (1), where x = (lD,m, lE , k), is uniformly
bounded for x0 ∈ R4

0,+.

Proof. We consider a function U(t) : R0,+ → R0,+ by U(t) = lD + m + lE + k. We
study that U is precise and differentiable function on some maximal interval (0, tf ). The time
derivative of system of equations (1) is

dU

dt
= (a+ b+ c) + lDm(δ − ξ1 − ξ2) + lDk(η2 + λ1 − η1) + lEm(β2 − β1)

+λ2lEk + lE(α1 − α2)− µ1lD − µ2m− µ3lE − µ4k.

For the simplicity of computation, we here consider the sum of the rate of immigration of der-
mal T-Cells to epidermis guided by Keratinocytes and the rate of proliferation of Keratinocytes
mediated by Cytokines released from epidermal T-Cells is almost same with the activation
rate of Keratinocytes by CD4+ T-Cells due to T-Cells mediated Cytokines, i.e., η2 + λ1 = η1.
Again we assume the rate of activation of CD8+ T-Cells by DCs and the rate of proliferation
of epidermal T-Cells is almost identical, i.e., β1 = β2. The rate of proliferation of epidermal

Imhotep Proc.



4 Abhirup Datta, Dipak Kumar Kesh and Priti Kumar Roy

T-Cells by activated Keratinocytes and the rate of activation of epidermal T-Cells by Ker-
atinocytes under the influence of IL-8 is assumed to be same for the sake of simplicity in the
calculation (α1 = α2). Finally, we neglect the rate of proliferation for Keratinocytes mediated
by Cytokines released from Keratinocytes themselves (λ2) as we consider the rate of prolifer-
ation of Keratinocytes mediated by Cytokines released from epidermal T-Cells like IL-17, IL-20.

Therefore the above equation becomes,

dU

dt
= (a+ b+ c)− lDm(ξ1 + ξ2 − δ)− µ1lD − µ2m− µ3lE − µ4k.

Now for all ω > 0, the following inequality holds [12],

dU

dt
+ ωU(t) ≤ (a+ b+ c)− (ξ1 + ξ2 − δ)(

l2D +m2

2
)− (µ1 − ω)lD − (µ2 − ω)m− (µ3 − ω)lE

−(µ4 − ω)k ≤ (a+ b+ c) +
(µ1 − ω)2 + (µ2 − ω)2 + (µ3 − ω)2

2(ξ1 + ξ2 − δ)
− (µ4 − ω)k.

If we assume that 0 < ω < µ4, then there exists ε > 0 such that

dU(t)

dt
+ ωU(t) ≤ ε for each t ∈ (0, tf ).

Let G(t,x)=ε− ωx, which ensures the Lipschtiz condition everywhere. Certainly,

dU(t)

dt
≤ ε− ωU(t) = G(t, U(t))∀t ∈ (0, tf ).

Let dy
dt = G(t, y) = ε− ωy and y(0) = U(0) = U0. Now this ODE has the solution

y(t) =
ε

ω
(1− e−ωt) + U0e

−ωt.

It is obvious that y(t) is bounded on (0, tf ). By Comparison Theorem of Birkhoff and Rota
(1982) [17],

U(t) ≤ y(t) =
ε

ω
(1− e−ωt) + U0e

−ωt ∀ t ∈ (0, tf ).

Now assume tf <∞, then U(tf ) ≤ y(tf ) <∞. Now the solution is established to be unique in
some interval (0, tf ) by the Picard-Lindelof Theorem. This contradicts our earlier assumption
that tf <∞. Hence U(t) must be bounded for all non-negative t and as a result x(t) is uniformly
bounded on R0,+ [12].

�

3.2. Permanence of the System

The system of equations (1) is considered to be permanent [18], if there exists a compact set D
in the interior of R4

+ = {(lD(t),m(t), lE(t), k(t)) ∈ R4
+ | lD(t) > 0,m(t) > 0, lE(t) > 0, k(t) > 0}

such that, all solutions inside the interior of R4
+ finally come into D and stay in D.

To study the permanence of the system of equations (1), let us consider R4
+ = {(lD(t),m(t), lE

(t), k(t)) ∈ R4
+ | lD(t) > 0,m(t) > 0, lE(t) > 0, k(t) > 0} is the positively invariant set of

the system of equations (1) and (lD(t),m(t), lE(t), k(t)) is the arbitrary positive solution of the
system of equations (1) with the help of positive initial value.

THEOREM 3.2. For the system of equations (1) satisfying the initial condition (lD(0),m(0), lE(0),
k(0)) ∈ R4

+, there exists positive l
∗
D max,m

∗
max, l

∗
E max and k∗max, such that for any (lD(t),m(t),

lE(t), k(t)) ∈ R4
+, lD(t) ≤ l∗D max,m(t) ≤ m∗max, lE(t) ≤ l∗E max and k(t) ≤ k∗max for large t.

Imhotep Proc.
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Proof. We have U(t) = lD + m + lE + k is bounded, which is ensured for every non-
negative t and consequently x(t) = (lD(t),m(t), lE(t), k(t)) is uniformly bounded on R+. Hence
the theorem.

�

THEOREM 3.3. For the system of equations (1) satisfying the initial condition (lD(0),m(0), lE(0),
k(0)) ∈ R4

+, there exists positive l∗D min, m
∗
min, l

∗
E min and k∗min, such that for any (lD(t),m(t),

lE(t), k(t)) ∈ R4
+, lD(t) ≥ l∗D min, m(t) ≥ m∗min, lE(t) ≥ l∗E min and k(t) ≥ k∗min for large t.

Obviously the system is bounded below. So we achieve a compact set D = {lD(t),m(t), lE(t),
k(t) | l∗D min ≤ lD(t) ≤ l∗D max, m

∗
min ≤ m(t) ≤ m∗max, l

∗
E min ≤ lE(t) ≤ l∗E max and k∗min ≤

k(t) ≤ k∗max} corresponding to the system of equations (1), where each and every solution of
the system with positive initial value will enter in to the compact set D and stay in D. Hence
the positive invariant solution of the system of equations (1) is permanent [12].

3.3. Total Cell Count

Now, if assume the relation µ1 < µ2 < µ3 < µ4 then,

dTtot
dt
≡ d(lD +m+ lE + k)

dt
≤ (a+ b+ c)− µ1(lD +m+ lE + k),

providing the sum of the activation rate of CD4+ T-Cells by DCs and the rate of activation
of DCs by CD4+ T-Cells is the same with the rate of migration of dermal layer T-Cells to
epidermis. Furthermore, we here consider the sum of the rate of immigration of dermal T-Cells
to epidermis guided by Keratinocytes and the rate of proliferation of Keratinocytes mediated
by Cytokines released from epidermal T-Cells is almost same with the activation rate of Ker-
atinocytes by CD4+ T-Cells due to T-Cells mediated Cytokines. Again we assume the rate of
activation of CD8+ T-Cells by DCs and the rate of proliferation of epidermal T-Cells is almost
identical. The rate of proliferation of epidermal T-Cells by activated Keratinocytes and the
rate of activation of epidermal T-Cells by Keratinocytes under the influence of IL-8 is assumed
to be same for the sake of simplicity in the calculation. Finally, the rate of proliferation for
Keratinocytes mediated by Cytokines released from Keratinocytes themselves is neglected be-
cause we consider the rate of proliferation of Keratinocytes mediated by Cytokines released
from epidermal T-Cells like IL-17, IL-20.

Lemma 3.4. Consider v is a variable satisfying v′(t) < d − f(φ)v(t), where d is a constant and
f(φ) is independent of v and t. Then If v(0) < d

f(φ) , it pursues that v(t) < d
f(φ) for every t.

Proof. See Smith and Wahl (2004, Lemma 4.1) [19].

�

Remark 3.5. If the inequalities are reversed, Lemma 3.4 also holds.

Applying the above Lemma 3.4, we can state that Ttot <
a+b+c
µ1

, if Ttot(0) < a+b+c
µ1

. Therefore,

if the above mentioned assumptions are hold, then the limiting value of the total cell population
should not exceed the quantity a+b+c

µ1
[20].

3.4. Equilibria of the System

The system of equations (1) has only the interior equilibrium point E∗(l∗D,m
∗, l∗E , k

∗). From the
first equation of the system (1), we have l∗D = a

ξ1m∗+η1k∗+µ1
, which is always positive. From the

second equation we find that m∗ = b
ξ2l∗D+β1l∗E+µ2

, which is again positive by our assumptions.

Imhotep Proc.



6 Abhirup Datta, Dipak Kumar Kesh and Priti Kumar Roy

Figure 1. Population densities of CD4+ T-Cell, Dendritic Cell, CD8+ T-Cell
and Keratinocyte, which are plotted as a function of time and the value of the
parameters are given in Table.

Figure 2. Population densities of CD4+ T-Cell, Dendritic Cell, CD8+ T-Cell
and Keratinocyte, which are plotted as a function of time, β1=0.0005 and
β2=0.0003 and the value of the other parameters are given in Table.

we get l∗E =
c+l∗D(δm∗+η2k

∗)
µ3−(β2m∗+α1)

, which is positive if µ3 > β2m
∗ + α1 from the third equation of

the system (1). Finally from the fourth as well as last equation of the model system we obtain,

Imhotep Proc.
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k∗ =
α2l

∗
E

λ1l∗D+λ2l∗E−µ4
, which is positive when λ1l

∗
D + λ2l

∗
E > µ4.

Now the variational matrix at the interior equilibrium point E∗(l∗D,m
∗, l∗E , k

∗) is given by
V (l∗D,m

∗, l∗E , k
∗) =



−ξ1m∗ − η1k∗ − µ1 −ξ1l∗D 0 −η1l∗D

−ξ2m∗ −ξ2l∗D − β1l∗E − µ2 −β1m∗ 0

δm∗ + η2k
∗ δl∗D + β2l

∗
E β2m

∗ + α1 − µ3 η2l
∗
D

λ1k
∗ 0 λ2k

∗ − α2 λ1l
∗
D + λ2l

∗
E − µ4


,

i.e.,

V (l∗D,m
∗, l∗E , k

∗) =



− a
l∗D

− ξ1l
∗
D 0 −η1l∗D

− ξ2m
∗ − b

m∗ −β1m∗ 0

δm∗ + η2k
∗ δl∗D + β2l

∗
E β2m

∗ + α1 − µ3 η2l
∗
D

λ1k
∗ 0 λ2k

∗ − α2
α2l

∗
E

k∗


,

i.e.,

V (l∗D,m
∗, l∗E , k

∗) =



− a
l∗D

− ξ1l
∗
D 0 −η1l∗D

− ξ2m
∗ − b

m∗ −β1m∗ 0

d31 d32 d33 η2l
∗
D

λ1k
∗ 0 d43

α2l
∗
E

k∗


,

where d31 = δm∗ + η2k
∗, d32 = δl∗D + β2l

∗
E , d33 = β2m

∗ + α1 − µ3 and d43 = λ2k
∗ − α2.

The characteristic equation is given by,

φ4 +A1φ
3 +A2φ

2 +A3φ+A4 = 0, (2)

where

A1 = −d33 +
a

l∗D
+

b

m∗
− α2l

∗
E

k∗
,

A2 = −a(d33)

l∗D
− b(d33)

m∗
+

ab

l∗Dm
∗ +

α2(d33)l∗E
k∗

− aα2l
∗
E

l∗Dk
∗ −

bα2l
∗
E

m∗k∗

+β1(d32)m∗ + η1λ1l
∗
Dk
∗ − η2(d43)l∗D − ξ1ξ2l∗Dm∗,
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Figure 3. Population densities of CD4+ T-Cell, Dendritic Cell, CD8+ T-
Cell and Keratinocyte, which are plotted as a function of time η1=0.002 and
η2=0.001 and the value of the other parameters are given in Table.

A3 = −ab(d33)

l∗Dm
∗ +

a(d33)α2l
∗
E

l∗Dk
∗ +

b(d33)α2l
∗
E

m∗k∗
− abα2l

∗
E

l∗Dm
∗k∗

+
a(d32)β1m

∗

l∗D
− α2β1(d32)l∗Em

∗

k∗

+η1(d31)(d43)l∗D − η1λ1(d33)l∗Dk
∗ +

bη1λ1l
∗
Dk
∗

m∗
− aη2(d43)− bη2(d43)l∗D

m∗

−β1ξ1(d31)l∗Dm
∗ + ξ1ξ2(d33)l∗Dm

∗ +
α2ξ1ξ2l

∗
Dl
∗
Em
∗

k∗
,

and

A4 =
ab(d33)α2l

∗
E

l∗Dm
∗k∗

− a(d32)α2β1l
∗
Em
∗

l∗Dk
∗ +

bη1(d31)(d43)l∗D
m∗

− ξ2η1(d32)(d43)l∗Dm
∗

−b(d33)η1λ1l
∗
Dk
∗

m∗
+ β1η1λ1(d32)l∗Dm

∗k∗ − abη2(d43)

m∗
+
α2β1ξ1(d31)l∗Dl

∗
Em
∗

k∗

−α2ξ1ξ2(d33)l∗Dl
∗
Em
∗

k∗
+ η2ξ1ξ2(d43)(l∗D)2m∗ − β1λ1η2ξ1(l∗D)2m∗k∗.

From Routh-Hurwitz criterion, the interior equilibrium point E∗(l∗D,m
∗, l∗E , k

∗) is said to be
stable if the following conditions are hold: (a) A1 > 0, (b) A4 > 0, (c) A1A2 − A3 > 0 and (d)
[(A1A2 −A3)A3]−A2

1A4 > 0.

Now, according to the Routh-Hurwitz criterion, the interior equilibrium point E∗ is stable if

(1) a
l∗D

> d33, (2) b
m∗ >

α2l
∗
E

k∗ , (3) d31d43 > λ1d33k
∗, (4) β1λ1k

∗ > ξ2d43, (5) ak∗ >
d31d43l

∗
D

λ1
+

α2l
∗
Dl
∗
E and (6) [(A1A2 −A3)A3]−A2

1A4 > 0.
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4. Numerical Simulation

In the preceding section, we have introduced analytical method for qualitative study of the
system. In this division, we execute numerical simulation of the model system. We have taken
approximate values of the parameters during our analytical outcomes. Numerical values of the
model parameters, mainly taken from [12], have been specified in the Table given below.

Table. Values of parameters used for model system
Parameter Default Values (Day −1)

a 15 mm−3

b 12 mm−3

c 9 mm−3

ξ1 0.15 mm3

ξ2 0.12 mm3

η1 0.0002 mm3

η2 0.0001 mm3

β1 0.005 mm3

β2 0.003 mm3

Parameter Default Values (Day −1)

δ 0.35 mm3

α1 0.007
α2 0.004
λ1 0.0003 mm3

λ2 0.0004 mm3

µ1 0.02
µ2 0.05
µ3 0.07
µ4 0.08

We are trying to observe the cell behavioral outline of different types of cells, involved in our
model system for deviation in the values of the model parameters. In Figure 1, CD4+ T-
Cell population increases from initial position to higher level and then decreases to ground level
gradually in first 100 days. From very beginning DC population decreases and afterward slightly
increases. CD8+ T-Cell population also increases from initial situation up to the highest point
and next tendency of decreasing nature is observed. Finally Keratinocyte population remains
constant at first near about 60 days. Then it increases sharply to the pick within 100 days. In
Figure 2, we decrease the values of the rate of activation of CD8+ T-Cells by DCs (β1) and the
rate of proliferation of epidermal T-Cells (β2). We consider here β1=0.0005 and β2=0.0003 for
Figure 2. Now, CD4+ T-Cell population increases but not as much as Figure 1. DC population
after 40 days increases gradually. Same behaviors are observed for the case of CD8+ T-Cell and
Keratinocyte population as like Figure 1. In Figure 3, we increase the values of the activation
rate of Keratinocytes by CD4+ T-Cells due to T-Cells mediated Cytokines (η1) and the rate
of further immigration of dermal T-Cells to epidermis guided by Keratinocytes and mediated
by IL-8 and IL-20 (η2). We assume η1=0.002 and η2=0.001. Here CD4+ T-Cell population
increases but range lies between Figure 1 and Figure 2. The nature of DC population behaves
as like as Figure 1. The behaviors of the other two populations CD8+ T-Cell and Keratinocyte
population perform as like as the previous figures.

5. Discussion

In our article, we introduce CD4+ T-Cell and CD8+ T-Cell populations. Next, we obtain unique
equilibrium point E∗(l∗D,m

∗, l∗E , k
∗) (interior equilibrium point) and then attain its stability

analysis. From Routh-Hurwitz condition, the interior equilibrium point E∗(l∗D,m
∗, l∗E , k

∗) is

said to be stable if the following conditions are hold: (1) a
l∗D
> d33, (2) b

m∗ >
α2l

∗
E

k∗ , (3) d31d43 >

λ1d33k
∗, (4) β1λ1k

∗ > ξ2d43, (5) ak∗ >
d31d43l

∗
D

λ1
+ α2l

∗
Dl
∗
E and (6) ∆A3 − A2

1A4 > 0, where
∆ = A1A2 −A3 > 0.

6. Conclusion

In the cell-biological scenario, we can conclude that if the values of the rate of activation of
CD8+ T-Cells by DCs (β1) and the rate of proliferation of epidermal T-Cells (β2) are decreased,
then DC population is increased. As a result, CD4+ T-Cell population is decreased and also
CD8+ T-Cell population is increased. Further the values of the activation rate of Keratinocytes
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by CD4+ T-Cells due to T-Cells mediated Cytokines (η1) and the rate of further immigration
of dermal T-Cells to epidermis guided by Keratinocytes and mediated by IL-8 and IL-20 (η2)
are increased. As an effect, CD4+ T-Cell and CD8+ T-Cell populations both are decreased. DC
population is unchanged for the variation of η1 and η2. The deviations in the values of β1, β2,
η1 and η2 have not any significant impact on Keratinocyte population. The increasing nature of
Keratinocytes remains unchanged. Therefore, we may bring to an end that CD8+ T-Cell along
with CD4+ T-Cell population has an effect not only growing criteria of the disease but also
the survival of Psoriasis. Thus if we can communicate our research findings into the treatment
policy of Psoriasis, we are able to expect a better outcome for welfare of our society.
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Government of India, Reference No. 38(1320)/12/EMR-II, Dated 3rd April, 2012.

References

[1] M. A. Lowes, A. M. Bowcock and J. G. Krueger, Pathogenesis and therapy of psoriasis,
Nature. 445 (2007) 866 - 873.

[2] J. B. Nickoloff, H. Xin, F. O. Nestle and J. Z. Qin, The cytokine and chemokine network
in psoriasis, Clinics in Dermatology. 25 (2007) 568 - 573.

[3] K. Boniface, E. Guignouard and N. Pedretti, A role for T cell-derived interleukin 22 in
psoriatic skin inflammation, Clin Exp Immunol. 150 (2007) 407 - 415.

[4] Y. Zheng, D. M. Danilenko and P. Valdez, Interleukin-22, a T(H)17 cytokine, mediates IL-
23-induced dermal inflammation and acanthosis, Nature. 445 (2007) 648 - 651.

[5] V. B. Morhenn, K. P. Rodan and R. H. Mullen, Use of recombinant interferon gamma
administered intramuscularly for the treatment of psoriasis, Arch Dermatol. 123 (1987) 7 - 1633.

[6] B. J. Nickoloff, G. D. Karabin and J. N. Barker, Cellular localization of interleukin-8 and
its inducer, tumor necrosis factor-alpha in psoriasis, Am J Pathol. 138 (1991) 40 - 129.

[7] K. E. Nograles, L. C. Zaba and E. G. Yassky, Th17 cytokines interleukin IL-17 and IL-22
modulate distinct inflammatory and keratinocyte response pathways, Br J Dermatol. 159 (2008)
1092 - 1102.

[8] E. G. Harper, C. Guo and H. Rizzo, Th17 cytokines stimulate CCL20 expression in ker-
atinocytes in vitro and in vivo: Implications for psoriasis pathogenesis, J Invest Dermatol. 129
(2009) 2175 - 2183.

[9] Z. Yao, S. L. Painter and W. C. Fanslow, Human IL-17: A novel cytokine derived from T
cells, J Immunol. 155 (1995) 5483 - 5486.

[10] I. Kryczek, A. T. Bruce and J. E. Gudjonsson, Induction of IL-17+ T cell trafficking and
development by IFN-gamma: Mechanism and pathological relevance in psoriasis, J Immunol. 181
(2008) 4733 - 4741.

[11] P. K. Roy, J. Bhadra and B. Chattopadhyay, Mathematical Modeling on Immunopathogenesis
in Chronic Plaque of Psoriasis: A Theoretical Study, Lecture notes in Engineering and Computer
Science. 1 (2010) 550 - 555.

[12] P. K. Roy and J. Bhadra, Comparative Study of the Suppression on T-Cell and Dendritic Cells
in a Mathematical Model of Psoriasis, International Journal of Evolution Equations. 5(3) (2010)
309 - 326.

[13] P. K. Roy, A. Datta and A. N. Chatterjee, Saturation Effects on Immunopathogenic Mech-
anism of Psoriasis: A Theoretical Approach, Acta Analysis Functionalis Applicata. 13(3) (2011)
310 - 318.

[14] P. K. Roy and A. Datta, Negative Feedback Control may Regulate Cytokines Effect during
Growth of Keratinocytes in the Chronic Plaque of Psoriasis: A Mathematical Study, International
Journal of Applied Mathematics. 25(2) (2012) 233 - 254.

Imhotep Proc.



Vol. 3 (2016) Effect of CD4+ T-Cells and CD8+ T-Cells on Psoriasis 11

[15] P. K. Roy and A. Datta, Impact of Cytokine Release in Psoriasis: A Control Based Mathematical
Approach, Journal of Nonlinear Evolution Equations and Applications. 2013(3) (2013) 23 - 42.

[16] P. K. Roy and A. Datta, Impact of Perfect Drug Adherence on Immunopathogenic Mechanism
for Dynamical System of Psoriasis, Biomath. 2 (2013), 1212101.

[17] G. Birkhoff and G. C. Rota, Ordinary Differential Equations. Chapman and Hall, 1982.

[18] B. D. Tian, Y. H. Qiu and H. J. Wang, Equilibriums and permanence for an Autonomous
competitive system with Feed Back Control, A M S. 2(50) 2008 2501 - 2508.

[19] R. J. Smith, Explicitly accounting for antiretroviral drug uptake in theoretical HIV models predicts
long-term failure of protease-only therapy, Journal of Theoretical Biology. 251(2) (2008) 227 - 237.

[20] J. Lou, L. Chen and T. Ruggeri, An Impulsive Differential Model on Post Exposure Prophylaxis
to HIV-1 Exposed Individual, Journal of Biological Systems. 17(4) (2009) 659 - 683.

Abhirup Datta
e-mail: abhirupdattajumath@gmail.com
Centre for Mathematical Biology and Ecology
Department of Mathematics, Jadavpur University
Kolkata - 700032, India

Dipak Kumar Kesh
e-mail: d kesh@yahoo.com

Centre for Mathematical Biology and Ecology
Department of Mathematics, Jadavpur University
Kolkata - 700032, India

Priti Kumar Roy
e-mail: pritiju@gmail.com
Centre for Mathematical Biology and Ecology
Department of Mathematics, Jadavpur University
Kolkata - 700032, India

Imhotep Proc.



AFRICAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Imhotep Mathematical Proceedings
Volume 3, Numéro 1, (2016),
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behaviour of some of the ordinary differential equations (ODE’s) and the partial differen-
tial equations (PDE’s) namely; Maxwell equations, Schrödinger’s equations and the Bessel
functions and their interactions and applications then investigate the fiber optics solutions
theory in communication engineering which plays a vital role in transmission capacity than
metallic cables and therefore suited to the increase demand for high transmission capacity
and speed. The problem involves studying the motion of sound which is a wave subjected
to a sinusoidal forcing function. In this case the focus will be on Kenya being one of the
developing countries in communication to the rest of the East African countries: Uganda,
Rwanda, Burundi and Tanzania through cross-border connectivity arrangements and how
fiber cables have enabled this happen in sharing data as fast as possible. The differential
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ments represented graphically.
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Nomenclature

v Propagation distance along the fiber
t Propagation distance along the time
Vgr Carrier group velocity
D Dispersion coefficient.
µ Envelope components for the real function of z
ν Envelope components for the real function of τ
λ Arbitrary parameter
F Unknown function of t and its derivatives

|A|2 Pulse amplitude
α Fiber losses
β2 Chromatic dispersion
γ Fiber nonlinearity
n2 Kerr nonlinear index coefficient
Aeff Effective core area
c Light velocity in vacuum
β1 First order dispersion
k Wave vector [radians/m] ν
ω Angular frequency [radians/sec]
λ0 Wavelength in vacuum [m]
n Refractive index
Jn (x) Frequency component of magnitude
Γ Gamma function
n1 Refractive index of the medium the light is leaving
θ1 Incident angle between the light beam and the normal
n2 Refractive index of the material the light is entering
θ2 Refractive angle between the light ray and the normal
n Side frequency number/order of differential equation
x or l Modulation index

D or dydx Differential operator
α Phase difference
fm Argument.

1. Introduction

The East African Marine System (TEAMS) is a 5,000-km fibre-optic undersea cable linking the
Kenya’s coastal town of Mombasa with Fujairah in the UAE was built at a cost of USD 130
million as a joint venture between the government of Kenya and Kenyan operators as follows;
42.5% – Telkom Kenya Ltd, 22.5% – Safaricom Ltd,10% – Kenya Data Networks Ltd, 10%
– Econet/Essar Telecom Ltd, 5% – Wananchi Group, 3.75% – Jamii Telecom Ltd, 1.25% –
Broadband Access/AccessKenya Ltd, 1.25% – Africa Fibrenet (Uganda) Ltd, 1.25% – InHand
Ltd, 1.25% – iQuip Ltd, 1.25% – Flashcom Ltd.
According to Daily Nation, Thursday 30th December 2010.Construction of the cable began
in January 2008 on the Emirates’ side and arrived in the Kenyan port city of Mombasa on
12th June 2009. Cable construction was completed in August 2009 and the Teams cable went
live for commercial service on 1st October 2009. TEAMS cable is connected to the Kenya
national fiber backbone network and other major backhaul providers, thus extending the gigabit
submarine capacity to the rest of the East African countries: Uganda, Rwanda, Burundi and
Tanzania through cross-border connectivity arrangements.TEAMS is strategically positioned
in the EA region to spur rapid social, economic and educational development by providing
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reliable, worldwide gigabit connectivity to ICT operators, ISPs and large bandwidth users at
cost-efficient and competitive rates.

A fiber optic consists of a central core in which light is guided, embedded in an outer cladding of
slightly lower refractive index. Light rays incident on the core-cladding boundary angles greater
than the critical angle undergo total internal reflection and are guided through the core without
refraction.

Recent developments in fibre optics in communication system prove almost zero loss and infinite
bandwidth. Indeed, optical fibre communication systems are fulfilling the increased demand on
communication links, especially with the proliferation of the internet, Chynoweth (1976). Fiber
cables have proven to provide faster and cheaper internet connectivity than the traditional
satellites; be it streaming videos live or downloading high-definition videos in a very short
time. As a result of recent technological advances in fabrication, light can be guided through
fibre optic with very minimal loss and these optical fibers are replacing copper coaxial cables
as the preferred transmission medium for electromagnetic waves. The low attenuation and
superior signal quality of fibre optic communication systems allow communications signals to be
transmitted over much longer distances than metallic-based systems without signal regeneration
Ishigure et al (1996).

Figure 1. A long, thin optical fiber transmitting a light beam (Photograph
courtesy Dr. Chynoweth (1976))

An optical fiber (Figure 1) consists of a central glass core of radius ”a” surrounded by an outer
cladding made of glass with a slightly lower refractive index. The corresponding refractive index
distribution (in the transverse direction) is given by:

n = n1 for r < a

n = n2 for r > a

The core diameter d = 2a of a typical telecommunication-grade multimode fiber is approxi-
mately 62.5 µm with an outer cladding diameter of 125 µm. The cladding index

n2 is approximately 1.45 (pure silica), and the core index n1, barely larger, around 1.465µm.
The cladding is usually pure silica while the core is usually silica doped with germanium, which
increases the refractive index slightly from n2 to n1. The core and cladding are fused together
during the manufacturing process and typically not separable. An outside plastic buffer is
usually added to protect the fiber from environmental contaminants. The diagram below by
STEP (2008)
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Figure 2. (a) A glass fiber consists of a cylindrical central core surrounded by
a cladding material of slightly lower refractive index. (b) Light rays impinging
on the core-cladding interface at an angle ϕ greater than the critical angle ϕc
are trapped inside the core of the fiber and reflected back and forth (A,C, B,
etc.) along the core-cladding interface.

2. Literature Review

Similar research has been done by Kundaeli (2001) analysed an optical fiber communication
system using laser rate equations where the effect of electrical pulse shaping on dispersion
include pulse distortion was investigated using computer simulation techniques. The results
showed that the detrimental effects of the dispersion can be greatly reduced without incurring
very high costs. More research has been done on dispersion-dominated nonlinear fiber-optic
channels, Sergei et al (2012) used used a technique aimed at simplification of the following digital
signal processing of nonlinear impairments by using a model describing pulse propagation in the
dispersion-dominated nonlinear fiber channel. In the limit of very strong initial pre-dispersion
the nonlinear propagation equations for each Fourier mode become local and decoupled.
Deqiang et al (2013) studied performance of concealed optical wireless communication link
based on modulated retro-reflector. The simulation results show that wavelength, angle of inci-
dence, and refractive index of CCR are the key factors influencing the performance of link, and
the SNR fluctuation is decreased by reflecting of CCR.
Fang D. et al (2014) studied the design of a fully-fiber multi-chord interferometer and a new
phase-shift demodulation method for field-reversed configuration where the noteworthy feature
was mathematically compared to the two divided interference signals, which had the same
phase-shift caused by the electron density but possess the different initial phase and low angular
frequencies. It was possible to read the plasma density directly on the oscilloscope by the original
mathematic demodulation method without a camera.
Buczynski et al (2014), who presented experimental and numerical progress in the development
of ultrafast solitonic nonlinear directional couplers utilizing multi-component glass dual-core
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photonic crystal fibers. Due to the fibre birefringence the switching wavelength can be tuned
by rotating the polarization of the excitation field.The numerical studies were focused on single
fundamental soliton switching that exhibits high extinction ratios. The resultant coupler de-
sign was further analysed from the aspect of nonlinear propagation based on coupled nonlinear
Schrödinger equations. The simulated nonlinear directional coupler indicates the possibility to
realize a high-extinction-ratio switch of sub-nJ 100 fs pulses which are simultaneously com-
pressed below 15 fs.

We therefore fell there is a way we can summarize some important equations needed in
the analysis of light propagations in fibers that lead to an increase speed in data transmission.

3. Mathematical Formulation

3.1. Bessel Differential Equations

Bessel differential equations given by;

x2
d2y

dx2
+ x

dy

dx
+
(
x2 − n2

)
y = 0, (1)

where n is the order of differential equation and it is a given number, real or complex. The
point x = 0 is a regular singularity, and is the Bessel functions which is a solution of equation
(1) which has a solution of the form

y =

8∑
K=0

akx
m+k (2)

Using power series and substituting in equation (2), we get the solution

Jn (x) =
xn

2nΓ (n+ 1)

{
1− x2

2 (2n+ 2)
+

x4

2.4 (2n+ 2) (2n+ 4)
− . . .

}
. (3)

The Bessel functions Jn (x) has power series that is convergent, with better convergence than
the familiar series for the exponential or trigonometric functions which can also be expressed as
the sum for integral values of n, Basmadjian (2002), where n-is a positive integer and not zero.
It can be written as an infinite polynomial with terms derived from the gamma function, Γ.

Jn (x) =

8∑
K=0

(−1)
k(x

2

)n+2k

k!Γ (n+ k + 1)
(4)

We considered only the case where n is an integer. The canonical solutions considered
are the Bessel functions of the first kind, Jn(x) non-singular at x = 0.

n particular, putting n = 1, in the above equation Bessel function of order one is given
by

J1 (x) =
x

2
− x3

24.4
+

x5

2242.6
− . . . (5)

The function J1 (x) is oscillating with a decreasing amplitude and varying period. The
roots of these functions are not completely regularly spaced and the amplitude of the wave
decreases with the increase value of x, which looks similar to a sine function.

The amplitude of the carrier signal is a function of the modulation index and under some
conditions; its amplitude can sometimes converge to zero. This does not mean that the signal
disappears, but rather that all of the broadcast energy is redistributed to the side frequencies.
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Figure 3. Plots of Bessel Functions of the first kind at 0 ≤ fm ≤ 20

For computational purposes, we use smaller measures to illustrate the concepts in all
the areas in this work.

For instance, if we increase the distance to 80 and 200 units, we obtain the image in
Figure 4 and Figure 5.
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Figure 4. Plots of Bessel Functions of the first kind at 0 ≤ fm ≤ 80

Figure 5. Plots of Bessel Functions of the first kind at 0 ≤ fm ≤ 200

This modulated signal is consisting of five frequency components added together to
give the appearance of a sine wave. In this case, the frequency is varying with time when
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displayed in the distance domain. From the three graphs of Bessel Functions above, the values
of the term Jn (mf) which gives amplitude of n-th side band with modulation index mf are
determined using series solution as mentioned in equation (2) and the values of the Jn (mf)
terms are calculated. Mathematically, the results of the numerical computation of the values of
J0 (mf), J1 (mf), J2 (mf), J3 (mf), J4 (mf) and J5 (mf) are plotted. It can be observed from
the graph that for small values of mf, the only Bessel functions with any significant amplitude
are J0 (mf) and J1 (mf), while the amplitude of the higher-order (n > 1 ) sideband pairs is
very small Saxena et al (2009). As mf increases, the amplitude of the rest frequency decreases
and the amplitude of the higher-order sidebands increase, thus an increasing signal bandwidth.
Therefore, the amplitudes of the higher-order sideband pairs eventually approach zero.

3.2. Schrödinger’s Equation

Schrödinger’s equation is named after Erwin Schröodinger, 1887-1961. This is a second order
partial differential equation. These equations will be used where the transmission of multiple
channels should address the impacts of dispersion and nonlinear phenomena that occur during
transmission. The NLS equation for slowly varying amplitude Ψ(z, τ) is given by

iΨz +
1

2
DΨττ + γ|Ψ|2Ψ = 0, (6)

where τ = t− z
Vgr

If we substitute Ψ=µ+iυ equation (6), Malomed (2002), we get the following

differential equation for µ and υ

−νz +
1

2
Dµττ + γ

(
µ2 + ν2

)
µ = 0 (7)

for the real part of equation (6) and

µz +
1

2
Dνττ + γ

(
µ2 + ν2

)
ν = 0 (8)

for the imaginary part of equation (6)
We construct the following trial functional in order to establish variation formulation,

He (2004)

J (µ, υ) =

∫
{λνµz − (1− λ) νzµ−

1

4
Dµ2

τ +
1

2
γ
(
µ4 + 2µ2ν2

)
+ F}dzdτ (9)

The advantage of the above trial-functional is that the stationary condition with respect to µ
results in equation (7)

Integrating equation (7) with respect to ν, we obtain the Euler–Lagrange equation

µz + γµ2ν +
∂F

∂v
= 0 (10)

δF

δν
=
∂F

∂v
− ∂

∂z

∂F

∂µz
+

∂2

∂τ2
∂F

∂ττ
− . . . (11)

Combining equations (10) and (11) and solving for F , we have

∂F

∂v
= −µz − γµ2ν =

1

2
Dνττ + γν3 (12)

Integrating both sides of equation (12) with respect to ν, we get

F = −1

4
Dν2τ +

1

4
γν4 (13)

We, therefore, obtain the following needed variation principle

J (µ, ν) =

∫
Lλdzdτ (14)
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where the Lagrange multiplier is defined as

Lλ = λνµz − (1− λ) νzµ−
1

4
D
(
µ2
τ + ν2τ

)
+

1

4
γ(µ2 + ν2)2 + aµµz + bννz (15)

Zhang et al(2005), where a and b are arbitrary constants whose values can be chosen as
a = −iλ.and b = i(λ− 1) in order for equation (15) to be written in the form of Ψ

Lλ (Ψ) = i

(
1

2
− λ
)

ΨΨz−i
1

2
ΨΨ∗

z −
1

4
D|Ψz|2 +

1

4
γ|Ψ|4 (16)

where Ψ∗
z=(µz−iνz).

Selecting the values of λ = 0, 12 , 1 and using the boundary conditions, equation (16)
has universality in some sense for nonlinear fiber optics as shown in Fig. 4

Figure 6. Distance Vs Amplitude

3.3. Maxwell Equation

The set of nonlinear differential equations, which is especially suitable for the study of wide-band
wavelength-division multiplexed systems of optical communications. The optics of dielectric
waveguides is governed by Maxwell’s equations, Born (1999).

Due to the material nonlinear effects, a fiber-optic transmission line is a nonlinear
channel Haiqing and David (2010).

According to Koshiba (1973), we understand that “a waveguide mode is a transverse
field pattern whose amplitude and polarization profile remains constant along the longitudinal
direction”. The electric and magnetic fields of a mode can be written as

E (r, t) = Em (x, y) e(iβz−iωt) (17)

H (r, t) = Hm (x, y) e(iβz−iωt), (18)
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where m is mode index, Em (x, y) and Hm (x, y)are the mode field patterns and β is the
propagation constant of the mode. These equations are differentiated twice to give the TE and
TM modes respectively as follows

∂2Ey

∂x2
+
(
k20 − β2

)
Ey = 0 (19)

for TE modes,
and

∂2Hy

∂x2
+
(
k20 − β2

)
Hy =

1∂ε∂Hy

ε∂x∂x
(20)

for TM modes where k0 = ω2

c2 n
2(x).

A guided mode can exist only if it satisfies a transverse resonance condition, such that the re-
flected wave has constructive interference with itself. The transverse component (x-component)
of the wave vector inside the core is h1 = k01cosθ, where θ is the angle of incidence, and
k0i = 2πni

λ , i = 1, 2, 3 and the longitudinal component β = k01cosθ.Verma et al (2011)
The transverse for the substrate and cover regions can be defined as h2 = k02cosθ, and
h3 = k03sinθ, where k01, k02 and k03 are the propagation constants in the respective regions.
Applying boundary conditions n1

n2
and n1

n3
the interface and using equations (19) and (20) we

obtain the eigen value equation for TE and TM mode as follows.

tan

(
h1d

2
− mπ

2

)
=

√
V 2 − h21d2
h1d

, m = 0, 1, 2 . . . (21)

for TE modes

tan

(
h1d

2
− mπ

2

)
=
n21
n22

√
V 2 − h21d2
h1d

, m = 0, 1, 2 . . . (22)

for TM modes.

Figure 7. Maxwell Equation Graph in 3D
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From Fig. 4, the left and right hand side of equations (21) and (22) is a function of
h1d and effective refractive index Neff of a guided mode which will give the value of β and
thus effective index. Applying the boundary conditions; we show the propagation constant for
the graph in three dimensions structure, having components for the TE like mode or effective
indices are considered in the horizontal structure to get a final structure. The TM field of the
vertical structure and the Neff obtained from the analytical calculations.
These results show the changes in shape of these pulses by propagating in optical fiber. From
our analysis, we have therefore asserted that sine waves describe many oscillating phenomena.
When the wave is damped, each successive peak decreases as time goes on.

Conclusion

This method is applied in ultrahigh-speed all-optical signal processing systems and has the
potential to be expanded for more complicated computing functionality. From the graphs, the
behaviour of solutions to the PDE’s, ODE’s and Bessel functions together with their interactions
and applications in the fiber optics solutions theory in communication engineering. We model
these ODE’s and PDE’s to describe the impact of dispersion in data transmission. The Bessel
functions have a decaying amplitude and therefore recommended for short transmission of data.
The Maxwell and Schrodinger equation plots maintain the shapes and therefore recommended
for long distance transmission of data.
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Eigenvalue Approach to the Solution of Generalized
Thermoelastic Interactions in an Infinite Body with

Cylindrical Cavity

Abhijit Lahiri and S. Sarkar

Abstract. A generalized thermoelastic problem with temperature- dependent modulus of
elasticity and thermal conductivity has been considered in an infinite medium with a cylin-
drical cavity. A fter applying Laplace-transformation the basic equations are presented
in the form of a vector-matrix differential equation and then are solved by eigen-value
method. Finally, the expressions of radial displacement, temperature and stress distribu-
tion are shown graphically for two different cases to compare the situations between the
temperature-dependent and temperature-independent material properties in the inverse-
Laplace domain.

Keywords. Generalized Thermoelasticity, Laplace Transform, Vector-matrix differential equa-
tion, Eigenvalue Method.

1. Introduction

Lord and Shulman [1] introduced the theory of generalized thermoelasticity with one relaxation
time parameter for the special case of an isotropic body. Dhaliwal and Sherief[2] extended this
theory to include the anisotropic case. In this theory, a modified law of heat conduction includ-
ing both the heat flux and its time derivative replaces the conventional Fourier’s law. The heat
equation associate with this theory is hyperbolic and hence predicts finite speed of propaga-
tion for heat waves. The uniqueness of solution for this theory was proved by Ignaczak[3,4], by
Dhaliwal and Sherief[2] and by Sherief[5].
Green and Lindsay[6] obtained the theory of thermoelasticity with two relaxation time parame-
ters. In this theory, the classical Fourier’s law of heat conduction is not violated when the body
under consideration has a centre of symmetry. The uniqueness of solution of this solution was
established by Green[7]. The fundamental solution was obtained by Sherief[8].
Indealing with coupled or generalized thermoelastic problems, the solution procedure is to
choose a suitable thermoelastic potential function, but this method has certain limitations as
discussed by Bahar and Hetnarski[9]. Here we prefer to adopt the eigenvalue method as in Das
et.al.[10] and as such, the physical quantities involved in the boundary and initial conditions
are directly solvable from the governing equations.
Previously, most of the investigations of thermoelasticity were done under the assumption of
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temperature-independent material properties, but at high temperature the material character-
istics such as modulus of elasticity, Poisson’s ratio, coefficient of thermal expansion and the
thermal conductivity are no longer constants[11]. In recent years, it has become necessary to
take into account the actual behavior of material characteristics.
In this paper, we have considered a infinite medium with a cylindrical cavity where the modulus
of elasticity and thermal conductivity are temperature dependent and comparisons are made
graphically between the temperature dependent and temperature independent material prop-
erties.

NOMENCLATURE

λ, µ= Lamè constants.
u = Displacement component.
t = Time variable.
σij=Stress component.
T= Absolute temperature.
T0 = Reference temperature.
ρ = Mass density.
Ce = Specific heat.
K = Coefficient of thermal conductivity.
κ=Coefficient of thermal diffusivity.
γ = (3λ+ 2µ)αt.
α∗ = Empirical material constant.
τ0= Thermal relaxation time parameter.
H(t)= Heaviside unit step function.

2. Formulation of the problem

We have taken into account the generalized thermoelasticity with one relaxation time in an
isotropic infinite medium which has a cylindrical cavity of radius R.
We use cylindrical co-ordinate system (r, ψ, z) with z-axis lying along the axis of the cylinder.
Due to symmetry, all functions are dependent only on r and t.
i.e. if −→u=(ur, uψ, uz) be the displacement vector, then
ur=u(r, t) ; uψ(r, t) = 0 = uz(r, t)
In this paper, the modulus of elasticity and the heat conductivity are taken to be temperature
dependent as
λ = λ0f(T ); µ = µ0f(T ); K = K0f(T ); γ = γ0f(T );
where f(T ) ≈ f(T0)=1− α∗T0 = 1

αT
considering |T−T0

T0
| << 1

The equation of motion and the heat conduction equations are :

ραT ü = (α0 + 2µ0)
∂e

∂r
− γ0

∂θ

∂r
(1)

and

∇2θ = (
∂

∂t
+ τ0

∂2

∂t2
)(
θ

κ
+
γ0T0e

K0
) (2)
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where e = 1
r
∂(ru)
∂r ; θ = T − T0 ; ∇2 = ∂2

∂r2 + 1
r
∂
∂r

The stress components are :

αTσrr = 2µ0
∂u

∂r
+ λ0e− γ0θ

αTσψψ = 2µ0
u

r
+ λ0e− γ0θ

αTσzz = λ0e− γ0θ
σzr = σψr = σzψ = 0 (3)

We define the following non-dimensional variables :

r
′

=
√

λ0+2µ0

ρ
r
κ ;u

′
=
√

λ0+2µ0

ρ
u
κ ; t

′
=
√

λ0+2µ0

ρ
t
κ ; τ

′

0 =
√

λ0+2µ0

ρ
τ0
κ ; R

′
=
√

λ0+2µ0

ρ
R
κ ;

θ
′

= θ
T0

;σ
′

= σ
µ0

Using the above non-dimensional quantities in equations (1), (2) and (3), we get(omiting the
primes) :

αT
∂2u

∂t2
=
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
− a∂θ

∂r
(4)

∂2θ

∂r2
+

1

r

∂θ

∂r
− (θ̇ + τ0θ̈) = g(

∂

∂t
+ τ0

∂2

∂t2
)(
u

r
+
∂u

∂r
) (5)

αTσrr = β2 ∂u

∂r
+ (β2 − 2)

u

r
− bθ

αTσψψ = (β2 − 2)
∂u

∂r
+ β2u

r
− bθ

αTσzz = (β2 − 2)(
∂u

∂r
+
u

r
− bθ (6)

3. Method of Solution

Consider the definition of Laplace transform :

T̄ (r, p) =

∫ ∞
0

T (r, t)exp(−pt)dt (7)

Using the above Laplace transform on time t to the equations (4), (5) and (6), we get:

αT p
2u =

d2u

dr2
+

1

r

du

dr
− u

r2
− adθ

dr
(8)

d2θ

dr2
+

1

r

dθ

dr
− (p+ τ0p

2)θ = g(p+ τ0p
2)(

u

r
+
du

dr
) (9)

αTσrr = β2 du

dr
+ (β2 − 2)

u

r
− bθ

αTσψψ = (β2 − 2)
du

r
+ β2u

r
− bθ

αTσzz = (β2 − 2)(
du

dr
+
u

r
− bθ (10)

Differentiating (9) with respect to r and using (8) in the resulting equation :

d3θ

dr3
+

1

r

d2θ

dr2
− 1

r2
dθ

dr
= p(1 + τ0p)(1 + ag)

dθ

dr
+ αT gp

3(1 + τ0p)u (11)
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Now we write equations (8) and (11) in the form of a vector-matrix differential equation
as :

LV = A V (12)

where L ≡ d2

dR2 + 1
R

d
dR −

1
R2 is a Bessel operator.

v =
[
u dθ
dr

]T
; A =

[
a11 a12
a21 a22

]
a11 = αT p

2 ; a12 = a ; a21 = αT gp
3(1 + τ0p) ; a22 = p(1 + τ0p)(1 + ε)

Let λi = α2
i , i = 1, 2 be the two eigen values of the matrix A which can be determined

from the following characteristic equation :-
α4 − (a11 + a22)α2 + (a11a22 − a12a21) = 0
The eigen vectors corresponding to the eigen values λi = α2

i , i = 1, 2 are respectively :-

Vi =

[
−a12

a11 − α2
i

]
Hence by Eigenvalue Method [ Appendix ], the solution of v can be written as :-

v =

[
u
dθ
dr

]
=

2∑
i=1

[AiViK1(αir) +BiViI1(αir)] (13)

where K1 and I1 are the modified Bessel Functions of second kind of order 1.
The radial displacement and the temperature in the Laplace transformed domain which are
both bounded at infinity, are now can be written as :-

u = −a12[A1K1(α1r) +A2K1(α2r)] (14)

θ = −[A1
a11 − α2

1

α1
K0(α1r) +A2

a11 − α2
2

α2
K0(α2r)] (15)

4. Boundary Conditions

To calculate the unknown constants A1 and A2 , we use the following boundary conditions on
the internal boundary r = R :-

Case I:-
In this case the cavity surface is assumed to be maintained at zero temperature and is subjected
to a ramp-type boundary load , i.e.

σrr(R, t) = −σ0H(t) , θ(R, t) = 0 (16)

Using Laplace Transformation on above :-

σrr(R, p) = −σ0
p
, θ(R, p) = 0 (17)

Case II:-
Considering the thermoelastic interactions when the surface of the cavity is stress-free and kept
at a temperature θ(R, t) ,then the boundary condition takes the form

σrr(R, t) = 0 , θ(R, t) = θ0e
−ωt (18)

Using Laplace Transformation on above :-

σrr(R, p) = 0 , θ(R, p) =
θ0

p+ ω
(19)

Imhotep Proc.



28 Abhijit Lahiri and S. Sarkar

5. Numerical Results

For our final result we have to find out the Laplace-inversion of radial displacement , tempera-
ture and stress distribution which are very complicated in nature.
To evaluate these we have used the Zakian method [12] . For our numerical calculation we have
chosen the Copper material . The values of the constants are given by :-
λ0 = 7.76 ; µ0 = 3.86 ; γ0 = (3λ0 + 2µ0)αt = 55.18 ; αt = 1.78 ; K0 = 386 ; cE = 3.831 ; ρ =
8954 ; T0 = 293K ; β2 = 4.01 ; b = 0.042 ; a = 0.0105 ; g = 1.61 ; τ0 = 0.01 ; ε=ag=0.017 ; R =
1 ; t = 0.3 ; σ0 = 1.2 ; θ0 = 1.5 ; ω = 0.5

Finally the expressions of radial displacement u , temperature θ and stress distribu-
tion σrr for the above two cases are presented graphically ( shown below ) where the curves are
plotted for different values of αT ( viz. 0.3 , 1 , 1.7 ). From the following graphs we observe that :-

i) we see that the three quantities stated above have their maximum values (absolute
value) for temperature independent case i.e. when αT = 1 for both case I and case II.

ii) for case I :-
• the distribution of displacement has greater absolute values for αT = 1.7 (i.e. αT > 1 ) than
for αT = 0.3(i.e. αT < 1 ).
• the temperature distribution has values near about zero for αT = 0.3.
• for stress distribution the absolute values are more or less same for αT > 1 and αT < 1.

iii) for case II :-
• the displacement distribution has greater absolute values for αT < 1 than for αT > 1 which
is the reverse of case I.
• for temperature distribution the absolute values are almost same for both αT > 1 and αT < 1.
• the radial tress distribution has greater absolute values for αT < 1 than for αT > 1.
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Appendix

Consider the differential equation in the form :

LV = A V (20)

where L ≡ d2

dx2 + 1
x
d
dx −

n2

x2 is a Bessel operator.
Let

A = V ΛV −1 (21)

where Λ=


λ1 ... 0
... λ2 ...
... ... ...
0 ... λn


is a diagonal matrix whose elements λ1. λ2. ....,λn are the distinct eigenvalues of A. Let V 1.
V 2. .....,V n be the eigenvectors of A corresponding to λ1. λ2. ....,λn respectively, and

V = [V 1 V 2 ... V n] (22)

Substituting (21) in (20) and premultiplying by V −1, we get

Ly = Λy ; y = V −1v (23)

as a system of decoupled equations.
A typical rth equation of (23) is

Lyr = λryr

d2yr
dx2

+
1

x

dyr
dx
− (λr +

n2

x2
)yr = 0 (24)

Case (i)

When λr = α2
r, the solution of equation (24) can be written as,

yr = ArKn(αrx) +BrIn(αrx) (25)

n is integer and Ar, Br are constants. Kn, In are modified Bessel functions of the second kind
of order n.

Case (ii)

When λr = −α2
r, the solution can be written as

yr = ArJn(αrx) +BrYn(αrx) (26)

n is integer and Jn, Yn are Bessel functions of the first kind of order n.
Hence the complete solution in this case can be written as v =

∑n
r=1 VrYr.
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Abstract. In this paper we introduce cocycles of multifunctions, and we study the concept
of attractors for them by using of semibornologies. We define a kind of conjugate relation
on them, and we show that a conjugacy takes an attractor to an attractor. We consider the
role of semibornology on the existence of new attractors.
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1. Introduction

Cocycles in continuous or discrete cases play an important role in the modeling of nature
phenomena [2, 5]. Here we extend this notion to multifunctions. We introduce the concept of
attractors for cocycles of multifunctions. If in a cocycle all the multifunctions are equal, then
this notion is equivalent to the concept of attractors for multifunctions, which has been studied
first by Lasota and Myjak [6]. We present an equivalence relation on cocycles, and we show that
if two cocycles are conjugate with a conjugacy h, then h takes an attractor of the first cocycle
to an attractor of the second one. We consider the effect of semibornology on an attractor of a
cocycle. We present a class of cocycles by using of top spaces.

2. Non-autonomous dynamical systems created by multifunctions

Suppose X1 and X2 are two sets, a relation F1 : X1 → X2 is called a multifunction if X1 is the
domain of F1. If X = {Xi}∞i=0 is a sequence of sets and F = {Fi : Fi : Xi → Xi+1}∞i=0 is a
sequence of multifunctions, then we say that (X,F ) is a cocycle of multifunctions. In this kind
of dynamics we have many choices to continue a process. This situation occurs in the meanings
of sentences. For example saying one sentence by a person can have different meanings for the
others, and the new sentences of each of them, also can have different meanings for the others.
To continue this process we find a cocycle of multifunctions.
When each Fi is a function, then (X,F ) is a non-autonomous dynamical system [4]. So generally
a cocycle of multifunctions creates a class of non-autonomous dynamical systems.
Iterated function systems [1] are also a special case of cocycle of multifunction. In a cocycle if
X0 = X1 = X2 = ..., F0 = F1 = F2 = ..., and for each x ∈ X0, the cardinality of F0(x) is a
constant natural number, then it is an iterated function system.
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We assume that β is a semibornology for

∞⋃
i=0

Xi [9], this means that β is a cover for

∞⋃
i=0

Xi, and

it is closed under finite unions. A semibornology β is called a bornology [3] if any subset of each
member of β is a member of it. For example the set of bounded subsets of a metric space is a
bornology for it, and the set of closures of the subsets of a topological space is a semibornology
for it.
We assume that (Ai)

∞
i=0 is a sequence with Ai ⊆ Xi. The lower bound of (Ai)

∞
i=0 is denoted by

LiAi and it is the set of x ∈
∞⋃
i=0

Xi such that for each B ∈ β with x ∈ B there is i0 ∈ N ∪ {0}

such that B ∩ Ai 6= ∅ for all i ≥ i0. The upper bound of (Ai)
∞
i=0 is denoted by LsAi, and it

is the set of x ∈
∞⋃
i=0

Xi such that for all B ∈ β with x ∈ B there exists i0 ∈ N ∪ {0} so that

B ∩ Ai 6= ∅ for infinitely many i ≥ i0. We say that (Ai)
∞
i=0 has bounded limit if LsAi = LiAi.

The bounded limit of (Ai) in the case of existence is denoted by LbAi, and it is defined by
LbAi = LsAi.

Suppose h :

∞⋃
i=0

Xi →
∞⋃
i=0

Xi is a bijection with hi(Xi) = Xi, where hi is the restriction of h to

Xi, and i ∈ {0, 1, 2, ...}. We say that h is a semibornological bijection if h(B) ∈ β, and h−1(B) ∈
β, for all B ∈ β.

Theorem 2.1. If h is a semibornological bijection, then h(LiAi) = Lihi(Ai), h(LsAi) = Lshi(Ai),
and h(LbAi) = Lbhi(Ai).

Proof. We only prove that h(LiAi) = Lihi(Ai). The other parts can prove by similar
method.

x ∈ LiAi ⇔ For all h(B) ∈ β with x ∈ h(B) there is i0 such that

h(B) ∩ hi(Ai) 6= ∅ for all i ≥ i0. ⇔ For all B ∈ β with h−1(x) ∈ B there is i0

such that h(B ∩Ai) 6= ∅ for all i ≥ i0. ⇔ For all B ∈ β with h−1(x) ∈ B there is i0

such that B ∩Ai 6= ∅ for all i ≥ i0. ⇔ h−1(x) ∈ LiAi.
Thus h(LiAi) = Lihi(Ai).

�

3. Attractors

We assume that X and F are the sets of previous section and β is a semibornology for

∞⋃
i=0

Xi.

Definition 3.1. A non-empty subset A of

∞⋃
i=0

Xi is called an attractor for a cocycle (X,F ) if for

all ∅ 6= B ∈ β with A ⊆ B, we have A = LbFi(B ∩Xi).

Example 3.2. For i ∈ {0, 1, 2, ...} we take Xi = Ri+1, and we define

Fi : Ri+1 → Ri+2

(x1, x2, x3, ..., xi+1) 7→ {( 1

2j
x1,

1

2j
x2, ...,

1

2j
xi+1,

1

2j
xi+1) : j ≥ i}.

If β = {
∞⋃
i=0

Bi : Bi is the closure of an open set in R
i+1}, then {0, (0, 0), (0, 0, 0), ...} is the

attractor of (X,F ).
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Now we assume that (X,F ) and (X,G) are two cocycles of multifunctions and β is a

semibornology for

∞⋃
i=0

Xi. Moreover we assume that h :

∞⋃
i=0

Xi →
∞⋃
i=0

Xi is a bijection such that

hi(Xi) = Xi, where hi is the restriction of h to Xi, and i ∈ {0, 1, 2, ...}. We say that (X,F ) is
conjugate to (X,G) under the conjugacy h if h is a semibornological bijection, and for given
i ∈ {0} ∪N , the following diagram commutes.

Xi
Fi−→ Xi+1

hi ↓ ↓ hi+1

Xi
Gi−→ Xi+1

.

Theorem 3.3. If A is an attractor for (X,F ), and if (X,F ) is conjugate to (X,G) under a
conjugacy h then h(A) is an attractor for (X,G).

Proof. Suppose B ∈ β with h(A) ⊆ B be given. Since h−1(B) ∈ β, and A ⊆ h−1(B),
then A = LbFi(h

−1(B) ∩Xi). Theorem 2.1. implies h(A) = Lbhi+1(Fi(h
−1(B) ∩Xi). Thus

h(A) = LbGi(hi(h
−1(B) ∩Xi)) = LbGi(B ∩Xi).

So h(A) is an attractor for (X,G).

�

If (X,F ) is a cocycle of multifunctions and β is a semibornology for X =

∞⋃
i=0

Xi, then we define

C(β) by

C(β) = {D ∈ β : For given y ∈ D and for all x if there is j such that y ∈ Fj(x)

then there is B ∈ β with x ∈ B such that Fi(B ∩Xi) = D ∩Xi+1 for all i}.
If we denote an attractor of (X,F ) with respect to a semibornology β by Aβ , then we have the
next theorem.

Theorem 3.4. If C(β) is a cover for X, then C(β) is a semibornology for X. Moreover if Aβ is
an attractor and if there is E ∈ C(β) such that Aβ ⊆ E then there is an attractor AC(β) such
that Aβ ⊆ AC(β).

Proof. Let D1, D2 ∈ C(β) and y ∈ D1 ∪ D2 be given. Without loss of generality we
assume that y ∈ D1. We choose z ∈ D2, then there exist a ∈ X and l ∈ N ∪ {0} such
that z ∈ Fl(a). If y ∈ Fj(x) for some j, then there exist B1, B2 ∈ β such that x ∈ B1

and a ∈ B2 and Fi(Bj ∩ Xi) = Dj ∩ Xi+1 for all i ∈ N ∪ {0}. For given i ∈ N ∪ {0},
Fi((B1∪B2)∩Xi) = Fi(B1∩Xi)∪Fi(B2∩Xi) = (D1∩Xi+1)∪(D2∩Xi+1) = (D1∪D2)∩Xi+1.
Since x ∈ B1 ∪ B2 ∈ β, then D1 ∪ D2 ∈ C(β). So it is a semibornology for X. If x ∈ Aβ ,
then for all B,E ∈ β with x ∈ B, and Aβ ⊆ E there is i0 such that for infinitely i ≥ i0,
B ∩ Fi(X ∩ E) 6= ∅, and there is k ∈ N so that for all i ≥ i0 + k, B ∩ Fi(X ∩ E) 6= ∅. Since
C(β) ⊆ β, then for all B,E ∈ C(β) with x ∈ B, and Aβ ⊆ E there is i0 such that for infinitely
i ≥ i0, B ∩ Fi(X ∩ E) 6= ∅, and there is k ∈ N so that for all i ≥ i0 + k, B ∩ Fi(X ∩ E) 6= ∅.
Thus x ∈ AC(β).

�

Theorem 3.5. Suppose x ∈ Aβ ∩Xj for some j. If C(β) is a cover for X, then Fj(x) ⊆ AC(β).

Proof. Let y ∈ Fj(x), E ∈ C(β) with y ∈ E, and D ∈ C(β) with AC(β) ⊆ D be given. Then
there is B ∈ β with x ∈ B such that Fi(B∩Xi) = E∩Xi+1 for all i ∈ N ∪{0}. Since D ∈ C(β),
then there is S ∈ β such that Fi(S ∩Xi) = D ∩Xi+1 for all i ∈ N ∪ {0}. We know that x ∈ Aβ
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so there is i0 such that for infinitely i ≥ i0, B ∩Fi−1(S ∩Xi−1) 6= ∅, and there is k ∈ N so that
for all i ≥ i0 + k, B ∩ Fi−1(S ∩Xi−1) 6= ∅. We have

E ∩ Fi(D ∩Xi) = E ∩Xi+1 ∩ Fi(D ∩Xi) = Fi(B ∩Xi) ∩ Fi(Fi−1(S ∩Xi−1))

⊇ Fi(B ∩Xi ∩ Fi−1(S ∩Xi−1)).

Thus for infinitely i ≥ i0, E ∩Fi(D∩Xi) 6= ∅, and for all i ≥ i0 + k, E ∩Fi(D∩Xi) 6= ∅. Hence
y ∈ AC(β).

�

4. Cocycle of multifunctions created by a family of diffeomorphisms on top
spaces

We begin this section by recalling the definition of a top space [7]. A smooth manifold T is
called a top space if it has a binary smooth operator

m : T × T −→ T
(a, b) 7→ ab

with the following conditions.
(i) (T,m) is a semigroup;
(ii) For all a ∈ T , there is a unique e(a) ∈ T such that ae(a) = e(a)a = a;
(iii) For all a ∈ T there is a−1 ∈ T such that aa−1 = a−1a = e(a), and the mapping

in : T −→ T
a 7→ a−1

is a smooth mapping.
Clearly each Lie group is a top space, but the converse may not be true. We can use of Rees
matrix semigroups [10] to construct top spaces which are not Lie groups. In fact if G is a Lie
group, M and N are two smooth manifolds, and p : M × N → G is a smooth mapping then
N ×G×M with the product (n, a, s)(k, b, l) = (n, ap(s, k)b, l) is a top space [8].

Now we assume that T = {Ti}∞i=0 is a family of top spaces. We take

f = {fi | fi : Ti → Ti is a diffeomorphism}∞i=0, and

g = {gi | gi : Ti → Ti+1 is a smooth map}∞i=0.

For given i we define a multifunction Fi : Ti → Ti+1 by Fi(t) = {gi,j(t) | j ∈ Z} where

gi,j(t) =

 gi(f
j−1
i (t))...gi(fi(t))gi(t) if j > 0

gi(f
−j
i (t))...gi(f

−1
i (t)) if j < 0

ei+1(gi(t)) if j = 0

.

If F = {Fi}∞i=0, then (T, F ) is a cocycle of multifunctions.
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Abstract. We consider scattering of a time-harmonic acoustic incident plane wave by a sound
soft smooth object with Lipschitz boundary. The application of conventional boundary or
finite element methods, have computational cost that grows linearly respect to the frequency
of the incident wave. Recent research has been devoted in finding methods which does not
loose robustness as frequency of the incident wave increases. Arden, Chandler-Wilde and
Langdon proposed a collocation method to solve a high frequency scattering by convex
polygons. They use a boundary element method, and incorporating products of plane wave
basis functions with piecewise polynomials supported on a graded mesh into approximation
space. They demonstrated via numerical experiments the number of degrees of freedom
required to achieve a prescribed level of accuracy grows only logarithmically with respect to
frequency. Here we proposed a collocation method for high frequency scattering by smooth
objects (objects with no corners, e.g. a circle). We applied same approximations as theirs, but
employing uniform mesh. We demonstrate through numerical experiments the logarithmical
grow of the solutions as frequency increases, with much reduced computational cost.

Mathematics Subject Classification (2010). 47A40, 65L60, 42B20 .

Keywords. Scattering problems, Collocation method, Osillatory integrals.

1. Introduction

We consider the two-dimensional problem of scattering of a time-harmonic acoustic incident
plane wave

ui(x) = eikx·d, in D := R2\Ω̄,
by a smooth convex sound-soft obstacle Ω, with Lipschitz boundary Γ. Here x = (x1, x2) ∈ R2,
d = (sin θ,− cos θ) ∈ R2 is a unit vector representing the direction of the incident field, and the
frequency of the incident wave is proportional to the wavenumber k > 0. The scattered field
us := u− ui ∈ C2(D̄) (where u and ui denote the total and incident field respectively) satisfies
the Helmholtz equation

∆us + k2us = 0, in D, (1)

We consider a sound-soft boundary condition,

u = 0, or us = −ui, on Γ (2)

we also need the Sommerfeld radiation condition,
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lim
r→∞

r
1
2

(
∂us

∂r
− ikus

)
= 0, (3)

where r := |x| and the limit holds uniformly in x/|x|. The Sommerfeld radiation condition is
essential to scattering problems because it ensures that the scattered field is not reflected back
from infinity.

We can reformulate (1 - 3) using Green’s theorems [12] and following the usual coupling proce-
dure to obtain a Fredholm integral equation of the second kind for ∂u

∂n

1

2

∂u

∂n
(x) +

∫
Γ

(
∂Φ(x,y)

∂n(x)
+ iηΦ(x,y)

)
∂u

∂n
(y) ds(y) = f(x), x ∈ Γ, (4)

where ∂u
∂n ∈ L

2(Γ) is the unknown boundary data, Φ(x,y) := i
4H

(1)
0 (k|x−y|) is the fundamental

solution of the Helmholtz equation in 2D, H
(1)
0 is the Hankel function of first kind of order zero,

n is the normal direction directed out of Ω, f(x) := ∂ui(x)
∂n + iηui(x), and η ∈ R\{0} is the

coupling parameter. The total field throughout D is determined by

u(x) = ui(x)−
∫

Γ

Φ(x,y)
∂u

∂n
(y)ds(y), x ∈ D.

In order to achieve an accurate solution of (1) for large k with reasonable computational
cost, the oscillatory nature of the solution must be taken into account when designing the com-
putational method. Recent research has focused on enriching the approximation space with
highly oscillating functions, such as plane waves or Bessel functions, in order to accurately rep-
resent the scattered field. To examine this work very closely, we survey some existing literature
where some schemes were proposed. A common approach is to include in the approximation
space a set of plane waves propagating in multiple directions. In the boundary element context,
this approach was attempted by de La Bourdonnaye [7] under the microlocal discretization
method and by Perrey-Debain et al. [13, 14].The approximation space can also be enriched by
including a single solution of the Helmholtz equation, the known incident field, to capture some
of the oscillatory behavior of the solution. The idea behind this approach is to represent the
solution of the integral equation by a linear combination of basis functions, these basis functions
being the product of a slowly oscillating amplitude and an oscillatory phase factor. The slowly
oscillating amplitude can be viewed as the ratio of the total field to the incident field and the
oscillatory phase factor could be the known incident field. Physical optics predicts that this
ratio approaches a constant in the illuminated region and zero in the shadow region as k →∞
[6]. This ratio can be approximated by conventional methods, employing piecewise polynomi-
als. This idea was first considered by Abboud et al. [1] for two-dimensional smooth convex
obstacles, where they used a Galerkin boundary element method on a uniform mesh to approx-
imate the ratio of the scattered field to the incident field. Their numerical experiments suggest
that the number of degrees of freedom needed to maintain accuracy needs to grow like k1/3 in
the high frequency limit. This is a dramatic improvement over the usual O(k) for conventional
methods, though a rigorous analysis is not available in [1] to support the numerical experiments.

A closely related method to that in [1] was recently considered by Dominguez et al. [8] for
a two-dimensional smooth obstacle. In [8] a p-version boundary element method is proposed,
that is, different degree polynomials are used to approximate the slowly oscillating amplitude
in the illuminated and transition zones, and the slowly oscillating amplitude is approximated
by zero in the shadow region. A rigorous error analysis is made, with error bounds showing that
the polynomial degree needs to increase proportionally to k1/9 to maintain a prescribe level of
accuracy as k →∞. This was confirmed by numerical experiments using a Galerkin scheme. In
fact the numerical experiments of [8] demonstrate that a reasonable accuracy can be achieved
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by keeping the number of degrees of freedom fixed as k →∞.

All of the schemes in [1, 8] can be expected to perform poorly for obstacles which have corners.
For obstacles with corners there is, as well as the reflected field, a diffracted field due to the
corners. These are not well represented in the ansatz proposed in [1, 8]. A scheme related to
those in [1, 8], for obstacles with corners, has been proposed by Chandler-Wilde et al. [4, 5],
Langdon et al. [9, 10] and Mokgolele et al. [11]. Chandler-Wilde and Langdon [4] proposed a
novel Galerkin boundary element method to solve the problem of acoustic scattering by a sound
soft straight line convex polygon.

In this paper we applied a collocation scheme on a uniform mesh to approximate the ratio
of the scattered field to the incident field. We begin §2 by defining our boundary element
method, here we explain the implementation of the collocation method on a smooth object,
taking a circle as an example. In §3 we present some numerical results, the relative errors seem
remain constant as wavenumber increases. Finally in §4 we present the conclusion.

2. Boundary Element Method

We begin by parametrising (4) on the boundary of a circle, Figure 1. We employ a uniform

Figure 1. Scattering by a circle

mesh on the boundary of circle, and use a collocation method for computation of a numerical
solution. The approximation space is a set of piecewise constants. As our starting point we
re-write (4) in arc-length parametrised form as

(I +K)ψ(s) = F (s), s ∈ [0, L], (5)

where ψ(s) := 1
k
∂u
∂n (x(s)), L := 2πa, F (s) := 2

kf(x(s)) and, for v ∈ L2[0, L],

Kv(s) := 2

∫ L

0

K(s, t)v(t) dt,

and K(s, t) =
(
∂Φ(x(s),x(t))
∂n(x(s)) + iηΦ(x(s),x(t))

)
|x′

(t)| and for a circle of radius a

x(t) = [a cos t, a sin t] and n(τ) = [cos τ, sin τ ]. (6)

Writing ψN as a linear combination of the basis functions gives

ψ(s) ≈ ψN (s) =

MN∑
j=1

vjρj(s), (7)
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where

ρj(s) :=

{
1, s ∈ [0, L],
0, elsewhere,

are piecewise constant basis functions, MN is the number of basis functions and vj is the
unknown to be determined. Substituting (7) into (5) gives

MN∑
j=1

[
ρj(s) +

∫ 2π

0

K(s, t)ρj(t)dt

]
vj = F (s). (8)

The collocation method is to choose the sets of collocation points, s1, ..., sMN
∈ [0, 2π], and

force (8) to hold at each collocation point, this leads to

MN∑
j=1

[
ρj(sm) +

∫ 2π

0

K(sm, t)ρj(t) dt

]
vj = F (sm) m = 1, ...,MN , (9)

Due to oscillatory of the kernel K(sm, t) and F (sm), the solution ψ(s) will be oscillating every-
where between [0, 2π] with larger amplitude in the illuminated region as wavenumber increases.
In order to reduce these oscillations, some authors [3, 8] introduced the following ansatz:

ψ(s) :=
1

k

∂u

∂n
(x(s)) = ψslow(s)eikx(s)·d. (10)

Substitute (10) into (5) and dividing throughout by eikx(s)·d gives

(I
′
+K

′
)ψ′(s) = F

′
(s), s ∈ [0, L], (11)

where ψ
′
(s) := ψslow(s), L := 2πa, F

′
(s) := F (s)e−ikx(s)·d, I

′
is an identity operator and, for

v ∈ L2[0, L],

K
′
v(s) := 2

∫ L

0

K
′
(s, t)v(t) dt,

where K
′
(s, t) = K(s, t)eik(x(t)−x(s))·d. Using (6) it is easy to evaluate the formulas for F

′
(s)

and K
′
(s, t). Starting from (11), we can follow the same procedure as before to arrive to a

system of the form (9). Precisely, we can define a boundary element approximation ψslow,N (s),
to ψslow(s), by

ψslow(s) ≈ ψslow,N (s) =

MN∑
j=1

vjρj(s), (12)

where the coefficients v1, . . . , vMN
are defined as the solution to a version of (9) with the

functions K and F replaced by K
′

and F
′
.

3. Numerical results

For our numerical experiment, we code (11) on the boundary of circle, length 2πa, where a = 1

is the radius of the circle. We evaluate relative L2 errors (‖ψ(s)−ψN (s)‖2)
‖ψ(s)‖2 ) for fix N = 8. Here

we take ψ(s) to be our exact value, evaluated at N = 16384, (Note: is possible to derive the
analytical solution of circle, for this particular problem). The relative errors seem to remain
constant with increasing wavenumber k. These initial results demonstrate the robustness of our
numerical scheme. In Figure 2, we show the total scattering field by a circle. This picture is
infact the numerical results of Figure 1.
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Table 1. Relative errors, Scattering by a circle

k
∥∥ψ − ψN∥∥2

/
∥∥ψ∥∥

2

5 2.523x10−1

10 2.770x10−1

20 2.581x10−1

40 1.9441x10−1

80 2.025x10−1

160 1.3970x10−1

Figure 2. Total scattering field by a circle

4. Conclusion

In this paper we have proposed a collocation method for solving high frequency scattering by
smooth objects. We demonstrated via numerical experiment that the relative errors remain
constant as wavenumber increases, which in turn means, the number of degrees of freedom
grows logarithmically with respect to frequency.
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Abstract. This paper presents language practices of some trilingual undergraduate students
of mathematics as they engaged with a mathematics task. The paper draws from a larger
study that was recently completed. The aim in this paper is to explore whether, how and
why the trilingual students use languages in their repertoire to make sense of an algebra
task. The two languages in focus are the home languages of the students and the Language
of Learning and Teaching (LoLT), English. Research shows that there is a research gap on
language practices in trilingual contexts. The study adapted a qualitative inquiry process. It
was conducted in one public university with a focus on first year students undertaking math-
ematics in their programs. Data was collected using questionnaires, clinical and reflective
interviews. Analysis followed Discourse analysis (Gee, 2005) with a focus on mathematical
Discourses. Findings show that the students engaged with competent mathematical Dis-
courses. Furthermore they used their home languages as resources in their repertoire to
interpret and understand the task. There were multiple purposes for code switching be-
tween the two languages in their solitary engagement. The findings are important to inform
Language in Education Policy (LiEP) in Kenya how and why some undergraduate students
of mathematics position the home languages when they engage with mathematics. In the
global perspective, the findings contribute to the field of mathematics education in trilingual
contexts.

Keywords. Trilingual, language practices, Discourse analysis, Home language.

1. Introduction

This paper presents some findings from a wider research study that explored language practices
of some trilingual undergraduate students engaging with mathematics in Kenya. The paper
focuses on whether, how and why some students draw on two languages of their three language
facility to make sense of an algebra task.
When students engage with mathematics, a range of language practices within one language
or multiple language environments may emerge. Furthermore, availability of more than one
language in a classroom may open opportunities for the use of different languages for learning
and/or teaching. Studies conducted in both bilingual and multilingual mathematics classrooms
show how students draw on languages at their exposure to participate and improve their per-
formance of mathematics. These studies have mainly focused on the Language of Learning and
Teaching (LoLT) only (e.g. Barwell, 2003) or on two languages: the LoLT and students home
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language (Adler, 1998; Setati, 2005). The LoLT in most cases is reportedly not the students
home language particularly in studies conducted in Africa. In contexts such as Kenya, India,
and Malawi, students also need to learn and gain fluency in a third language referred to as the
national language. These languages are commonly used for communication between and among
different language communities. The national languages, however, are not used in mathematics
classrooms as LoLT (Chitera, 2009). In these contexts, the availability of the third language
exposes the students to a third language in school and makes the students trilingual (see Hoff-
mann, 2001). Such trilingual students may also have other languages in their repertoire, but
the concern of this paper is on three languages.
The languages are home language, the national language and the LoLT, here being English.
They have different statuses and mathematics students are at one time or the other exposed to
them in school. While research in mathematics education in bilingual and multilingual mathe-
matics classrooms has recently been increasing in diversity and volume (Phakeng, 2013; Setati,
Chitera and Essien, 2009), no research addresses how such trilingual students use their three lan-
guages while engaging with mathematics. This study will particularly deal with two languages
of the three languages in the trilingual students language repertoire.

2. Why focus on tringualism?

1 2 Research on trilingualism is limited and as such there is no one definition of trilingualism
that has been adopted (Hoffmann, 2001). Part of this limitation could be attributed to the as-
sumptions about trilingualism: that it is an extension of bilingualism or it should be viewed as
part of multilingualism (see Beaten Beardmore, 1982 in Hoffmann, 2001)). Furthermore there
are implicit suggestions that several lingualisms can be subsumed under bilingualism or mul-
tilingualism. While the assumptions may be based on quantitative distinctions between the
different lingualisms, research also shows that there are some common characteristics among
bilingual and multilingual persons for example, the practice of code switching between lan-
guages (see Hoffmann, 2001).
Researchers in the area of trilingualism (Hoffmann, 2001; Ogechi, 2002)) accept the quanti-
tative aspect of trilingualism. But there are also qualitative aspects that are characteristic of
trilingualism (Hoffmann, 2001). First is that there different groups of trilingual, depending on
both the circumstances and the social context under which they acquire and use the three
languages. Second is that a trilingual speaker uniquely uses his/her three languages in ways
that are determined by his/her communication needs. He/she has the ability to function like
a monolingual, a bilingual or a trilingual depending on, for example, the topic, place or inter-
locutor. This requires a decision to code-switch. Trilingual people in fact assign, consciously or
not, different functions to their three languages (Hoffmann, 2001).
Given these quantitative and qualitative aspects of a trilingual, it is observed that while a
trilingual person may share some characteristics with a bilingual and/or multilingual person,
a trilingual is not an extension of a bilingual but a special case of a multilingual person who
retains characteristics of his/her own. From the foregoing discussion, a question that begs un-
derstanding is one on language practices of trilingual mathematics students when they engage
with mathematics.

1Home language: refers to the language commonly used at home and in the larger community. In some works it

is also referred to as main language (e.g. Adler, 1998). A home language may be the first language of a speaker
or other language acquired.
2This paper I have referred to a bilingual as to an individual who acquires and is proficient in two languages

(Grosjean, 1982) and a multilingual as an individual who is proficient in more than two languages (see e.g.

Chitera, 2009)
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3. Background information and research in Kenya

Majority of Kenyan students become trilingual through schooling. During the first three years
of their schooling, the Language in Education Policy (LiEP) stipulates that the predominant
language in the school environment is used as the LoLT. The pre-dominant language is in most
cases the home language of the majority students. During this period the students are intro-
duced to formal learning of their home languages while Kiswahili and English are taught as
subjects. Despite this trilingual facility, research in Kenya has been limited to the bilingual
language facility of the students.
Research exploring the use of two languages in mathematics and sciences for instance, Kiswahili
and English or Dholuo and English has been conducted particularly from the teaching perspec-
tive (Bunyi, 1997; Cleghorn, Merrit, and Abagi, 1989; Merrit, Cleghorn, Abagi, and Bunyi,
1992). However, there is no previous research in Kenya and elsewhere that is available that has
dealt with how individual trilingual students, and in particular undergraduates, use their trilin-
gual language facility when engaging with mathematics. In fact in her review of what has so far
been researched in mathematics education and language diversity, Phakeng, (2013) shows that
there remains a gap in research in trilingual contexts. In view of the aforementioned research
gap, the current study is necessary. The study was guided by the following questions;

1. How do some trilingual undergraduate students in Kenya use their languages when solving
mathematics tasks?

2. What language practices do these trilingual undergraduate students use when engaging
with given mathematics tasks?

3. Why do these students use their languages as they do?

The questions above helped to focus on the students language practices through their verbal
and non-verbal utterances, actions and reflections on their linguistic train of thoughts while
they engaged with a mathematics task. The language practices of the trilingual students help
to understand how the students position themselves as they engage with the task in relation to
mathematics Discourse and in the use of the home languages and the LoLT and in turn how
they position the languages as they engage with the task.
In the following section, I situate the problem of trilingualism in the wider field of mathematics
education by drawing on literature in bi/multilingual contexts.

4. Situating the problem in the field of Mathematics Education

The language practices of trilingual students engaging with mathematics can be addressed
through understanding the relationship between language and mathematics and the role that
language plays in mathematics students performance. Furthermore, understanding language
practices of bilingual and multilingual mathematics students can shed light into exploring lan-
guage practices of trilingual mathematics students.

4.1. Language and Mathematics

One way of describing the relationship between languages, that is a natural language like Eng-
lish, and mathematics is in terms of linguistic notion of register (Pimm, 1987). Halliday (1975
in Pimm, 1987) argues that mathematics register has to do with how words and expressions are
used in mathematics, styles of meaning and ways of arguing in mathematics. It can be developed
in any natural language for instance, Kiswahili or English. In fact research (Halliday, 1974 in
UNESCO, 1974; Pimm, 1987) shows that there are some defining characteristics of mathematics
register in relation to the English language, hence the development of mathematical language.
Part of knowing mathematics is acquiring control over mathematics register so as to be able to
speak like a mathematician (Pimm, 1987). The student should therefore learn to use the lan-
guage of mathematics and hence be able to construct, express and communicate the intended
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mathematical meanings (see e.g. Pimm, 1981). As noted by Setati and Adler, (2000), the reality
is that speaking, listening, reading and writing mathematics in multilingual classrooms requires
the use of the LoLT, which students may not be fully fluent in. The foregoing discussion leads
us to think of the ways of knowing and meaning in mathematics. In particular, it leads us to
the formal and informal mathematics languages and how they are used in classrooms.

4.2. Formal and Informal mathematical language

Students come to school with everyday ways of knowing, speaking and writing mathematics
which are different from the formal ways of using the mathematics register and hence the lan-
guage of mathematics. According to Setati and Adler, (2000) formal mathematical language
refers to the standard terminology or mathematics register which is developed within the for-
mal settings like schools. It is the language valued in school mathematics. On the other hand,
informal mathematical language is the kind that learners use in everyday life to express their
mathematical understanding. Based on what they have acquired and how they manipulated
meanings as young children learning how to mean, learners use their informal language in an
attempt to assign meaning to unfamiliar mathematical phrases and expressions (Moschkovich,
2003). Although informal mathematics talks are inappropriate in formal mathematics settings,
Moschkovich (ibid) observes that they should not be viewed as obstacles to learning rather
they should be seen as valuable resources for developing learners mathematical competence.
They can be used to assist learners in learning mathematics by moving from informal to formal
language of mathematics that is valued in school mathematics. Hence the classroom plays host
to both informal and formal ways of knowing, speaking and writing mathematics.
Moving from informal mathematics language to formal mathematics language involves learning
mathematics within mathematics discourses. There are multiple and varied mathematics dis-
courses. In what follows, I briefly discuss mathematical Discourses. To build on them, I start
the discussion on Discourse Analysis.

4.3. Discourse Analysis and Mathematical Discourses

The discussion in this paper draws broadly on (Vygotsky, 1986, 1978) socio-cultural perspec-
tive and the analysis follows Discourse analysis (Gee, 2005) with a focus on mathematical
Discourses (Moschkovich, 2002). Vygotskian socio-cultural perspective examines the roles of
social and cultural processes as mediators of human activity and thought (Vygotsky, 1986,
1978). According to Vygotsky, (1986), human thought realizes itself, and is expressed, in words.
Furthermore, mediation of the interactional process of thought and word occurs through cul-
turally constructed artefacts which include elaborate sign system such as language. Language
then expresses thoughts through verbal and non-verbal communication. The expressions can
be found in the interactions within and between human beings, and between human beings
and objects. Therefore according to Vygotsky, language mediates human thinking and social
interactions, that is, communication within and between humans.
In his work of Discourse analysis, Gee (2005) acknowledges language as a tool for communication
and also provides a method for analysis. Gee (ibid) sees the primary functions of language as to
support performance of social activities and identities and, human affiliation within cultures,
social groups, and institutions, hence Discourse (with capital D) analysis. Gee, (2005) makes
a distinction between the terms discourse with little d and big D. He refers to discourse (with
little d) as the language-in-use or the use of language on site (p. 7) and to Discourse (with big
D) as language plus other non-language stuff. Thus he states Discourse as: ways of combining
and integrating language, actions, interactions, ways of thinking, believing, valuing, and using
various symbols, tools, and objects to enact a particular sort of socially recognizable identity
(these are social practices) (pp. 21). From the quote above, we use spoken or written language
in tandem with non-language stuff to perform actions in the world and hence project ourselves
as certain kinds of persons engaged in certain kinds of activities (Gee, 2005). In other words,
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language supports how we act as certain identities engaged in certain activities, and hence we
get associated with groups whose members act as we do. Central to Discourse analysis is recog-
nition; if the activity and identity are recognised, then one will have pulled off a Discourse of a
sort (Gee, 2005, 23). The meanings derived in any one Discourse situation are multiple, varied
and situated in context of use. In this paper, I focus on Discourse (with capital D) analysis.
Moving from informal mathematics language to formal mathematics language means that stu-
dents are involved in learning the mathematics register. The knowledge of mathematics register
facilitates mathematical conversations in the classroom (Pimm, 1987). In order for students to
acquire this register, it is imperative that teachers teach from the basis of conceptual curricu-
lum so that students come to learn and understand the intended curriculum (Thompson and
Thompson, 1994).
In conceptual curriculum the teacher provides and asks students for explanations in the process
of solving a task (Thompson and Thompson, 1994). Alongside the conceptual orientation is
the calculational orientation, which is viewed as composed of procedural steps of mathematical
operations. The distinction between these two classroom orientations has been extended into
calculational and conceptual discourses by Sfard, Nesher, Sreefland, Cobb, and Mason (1998).
These authors refer to calculational discourses as the discussions in which the primary topic of
conversation involves describing the specific steps that have been followed to arrive at a mathe-
matical solution. In contrast, conceptual discourse involves reasons for calculating in particular
ways. Integrating the calculational and conceptual discourses at play with Discourses from Gee
(2005), it is in the interest of this study to ask; when students explain their mathematical un-
derstanding conceptually and/or calculationally, in what ways do they integrate and combine
language and non-language stuff to communicate this understanding? Literature so far reviewed
show that students need to gain control of the mathematics register and use the valued formal
mathematics language to communicate their mathematical understanding. However, it is the
mathematical Discourses within their communication that is most important in deriving mean-
ings of their utterances.
Using a situated and socio-cultural perspective and the notion of Discourses , Moschkovich,
(2002) observes that mathematical Discourses constitute ways of combining and integrating
language with other non-language stuff, and ways of saying, doing and being in mathematics.
In particular, practices that count as participation in competent mathematical Discourse in-
clude particular modes of argument such as precision, brevity, logical coherence, abstracting
and generalising, imagining, visualising, making mathematical connections, assumptions and
using mathematical representations, justifying, gesturing and predicting (Moschkovich, 2002).
To be recognised as competent in mathematics Discourse, trilingual mathematics students need
to engage with mathematics tasks in ways that mathematics competent people do and in ways
that are acceptable in the mathematics Discourse community. They need to have developed the
acceptable practices within mathematics Discourse. They learn these practices through inter-
action with others for instance through interaction with teachers, books and with other tools
like calculators and mathematical tables, non-tangibles things like formulae and discussion with
peers. It is in such interactions that negotiations of meanings happen and probably different
and multiple ways of doing mathematical tasks are found. With time and continued practice,
and building and rebuilding mathematical arguments, students develop mathematical compe-
tence in spoken, written mathematics and ways of acting and being in mathematics Discourse.
If they project the ways of being in mathematics that can be identified with the mathematical
Discourse; they enact socially situated identities and activities within mathematical Discourse.
In learning and teaching then trilingual students are exposed to a range of mathematics Dis-
courses. In line with that, this paper will reveal a range of mathematical Discourses that the
selected trilingual students draw on and enact as they engage with mathematics.
It is however, important to note that mathematical Discourses are mediated through natu-
ral languages, for example English and Setswana. With that regard, a discussion on language

Imhotep Proc.



50 Njurai E.W.

practices involving bilingual and multilingual students is relevant for this discussion. The most
common language practices in contexts of language diversity reported in literature is that of
code switching.

4.4. Language practices of bilingual and multilingual students

Studies in bi/multilingual classrooms have shown that code switching between students home
languages and LoLT can support their participation and performance in mathematics classroom.
In a review of these studies, I find out how and why bi/multilingual learners switch to their
home languages when they engage with mathematics tasks that are presented in LoLT. The
findings provide insights into language practices of trilingual learners.

4.4.1. Code switching. 3 4 Code switching is the alternative use of two or more languages in
an utterance or conversation in a more or less deliberate way (Baker, 1993; Grosjean, 1982).
The alternation can involve a word, a phrase, a segment of a sentence, a sentence or several
sentences. It is a common characteristic of bi/multilingual speech and there are communicative
purposes for which it is used. While the works of Baker and Grosjean portray code switching as
a verbal strategy, a corresponding non-verbal strategy of language switching has been proposed
and used in research on mathematics education. Language switching refers to the use of two
or more languages during solitary and/or mental arithmetic computation (Moschkovich, 2005).
Language switching is here seen to mean switching between two languages in thinking through
computations. In this study I choose to refer to all situations where students switch between
languages in verbal conversations or in mental computations as code switching. However, the
differences between the language skills of conversation and mental computations or thinking
will be noted appropriately. In a single speech, code switching may serve different purposes in
communication and the languages involved may have a range of functions. In what follows I
discuss the purposes for which code switching has been used in bi/multilingual mathematics
classrooms and its influence in the learning and teaching process. In so doing I highlight the
how and why code switching is practiced.

4.4.2. Purposes for code switching in bilingual and multilingual mathematics classrooms. Re-
search shows that code switching between learners home language and LoLT supports learning
and teaching in bi/multilingual classrooms (Clarkson, 2006; Cleghorn, Merrit, and Abagi, 1989;
Merrit, Cleghorn, Abagi, and Bunyi, 1992; Moschkovich, 2005; Parvanehnezhad and Clarkson,
2008; Planas and Civil, 2008; Planas and Setati, 2009). Whenever it is used in the learning and
teaching of mathematics, code switching is used for a range of purposes. Some of the purposes
are discussed below with the functions of the language(s) embedded in the communicative pro-
cess. Furthermore, most of the studies that give focus to code switching focused on learners who
are still learning the LoLT and had limited ability in it. Exceptions to these are for example
studies of Clarkson (2006) and Parvanehnezh and Clarkson, (2008) where some learners had
high proficiency in both the LoLT and the respective home languages.

Translating from one language to another
Code switching is practiced with the purpose of translating from one language to an-

other for a range of linguistic reasons (Kern, 1994). It can assume verbal, written and mental
communication. Furthermore, translation is only possible when the message is first understood
in the original language. Some reasons for which translation has been used in mathematics
classrooms are;

a. To express words or phrases in the language that is more familiar than the other

3The situated and socio-cultural perspective looks at the use of situational resources students use and ways that

mathematics Discourses are relevant to the situation.
4Discourse Analysis from Gee, (1996)
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It has been observed that bilingual mathematics students translate mathematics task content
due to familiarity with certain words and numbers in home language, and not due to lack of
knowledge of such words (Moschkovich, 2005; Parvanehnezhad and Clarkson, 2008). Studies
in multilingual settings show that teachers commonly switch from the LoLT to learners home
languages to make lesson content familiar for the learners (e.g. Cleghorn, Merrit, and Abagi,
1989). Cleghorn et al., (ibid) observed that the use of local and familiar words may have ex-
panded students’ awareness of word meaning and language differences, helping to develop their
English competence while also fostering understanding of the concepts taught. This was neces-
sary as the students were still developing proficiency in English as they learnt science in it. The
discussion on students familiarity with home languages is important for the trilingual students
in Kenya. Some of the students translated the task content mentally because they were more
familiar with home languages than they were with the LoLT.

b. To emphasize a point or certain words

Translation is used to emphasize a point or words or phrases (Baker, 1993; Merrit, Cleghorn,
Abagi, and Bunyi, 1992). In this case of translation words are substituted with words of another
language with the aim of putting emphasis; however no explanations are given for the words
(Merrit, Cleghorn, Abagi, and Bunyi, 1992). For instance, in their study, Merrit, Cleghorn,
Abagi, and Bunyi, (1992) observed that while speaking of a container, a Standard eight teacher
used the word mkebe, the Kiswahili equivalent word for container, similarly for tapeworm, he
used jofi the Dholuo word for tape worm. In so doing the teacher emphasised specific objects
without explaining their meanings. Translation of some English words to home languages was
evidenced in this study.

c. Translating all the time

Some students translate text all the time with the ultimate goal of transforming the infor-
mation into a more usable representation (Kern, 1994). In his study with Vietnamese-English
bilingual students, Clarkson (2006) observed that the Vietnamese mathematics students trans-
lated problems from English to Vietnamese. The use of Vietnamese was associated with the
assistance the students got from the parents who prominently used Vietnamese or from siblings
who used English and Vietnamese. Consequently while in school, the students translated the
problems into Vietnamese while reading and thinking through them. They then translated back
to English to make the ideas compatible with the classroom language situation. While it is not
clear whether the students in Clarksons study translated all the content, he noted that the
students did not translate individual words to check for meaning. Translation of all content
may, however, pose a challenge since some of the terms of the mathematics may either not be
available in home languages or are not readily used (Setati, 1998). Furthermore, translation
does not always work to the advantage of students (Kern, 1994), since if content is inaccurately
translated it may lead to misconceptions. Trilingual students may translate a given task to their
home languages all the time for a range of reasons for example to seek understanding or due to
familiarity with home languages. Such languages have implications for how they engage with
mathematics. Most of the research reviewed here, which focuses on the use of code switching
for translation purposes was done with learners in their early or middle stages of learning their
LoLT. In contrast all the students in this study were academically proficient in LoLT, despite
that; they translated the task content from LoLT to their home languages.

Context of using language
Research shows that the contexts in which bi/multilingual learners find themselves may facili-
tate or constrain code switching (Cohen, 1995; Grosjean, 1982). Contexts involve both physical
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environment and the presence or absence of other people. Research in mathematics classrooms
provides evidence of influence of context in language use (Clarkson, 2006; Parvanehnezhad and
Clarkson, 2008; Planas and Setati, 2009). For instance, bilingual learners switch between home
language and LoLT while operating in their individual private world or in small groups where
they share a home language (Clarkson, 2006; Planas and Setati, 2009). On the contrary, bilin-
gual learners remain in the LoLT when they are organised in linguistically mixed groups (Planas
and Civil, 2008; Planas and Setati, 2009). In the study by Planas and Setati (2009), the students
in their study continued using the LoLT despite being prompted to use their home languages,
probably viewing their home language as a language that is not valued in mathematics class-
room learning. This constraint to code switching may be more pronounced in environments
where learners are restricted by the LiEP.
Given that code switching may be prompted by contexts, it is important to identify and un-
derstand the contexts that facilitate or constrain trilingual undergraduate students to switch
between languages when they engage with mathematics tasks.
In concluding this section on situating the problem of trilingualism, it can be seen that language
and mathematics are complexly related. Expressing their relationship in terms of mathematics
register involves expressions that go beyond words and structures to styles of meaning and
modes of argument. Students need to gain control of the register in order to use it as mathe-
matically competent people do. While they need to learn the formal and valued mathematics
register in school, they report to school with informal ways of knowing, more so in different lan-
guages which are not valued in school. In deriving meanings of their mathematical utterances,
what is most important is to consider the mathematical Discourses within their communication
either in LoLT or home languages or both.
For trilingual speakers, switching between any two languages is an important speech strategy
(Hoffmann, 2001), as discussed earlier. They use their three languages within their linguistic
environment and communication needs. Hoffmann observed that in education, trilingual stu-
dents use the LoLT more commonly in external communication, while other languages are used
for inner functioning. In the light of Hoffmanns observations on trilingual speakers, I explore
how and why some trilingual undergraduate students in Kenya use two of their three languages
facility when they engage with mathematics.
In the following section I briefly summarise the theory and method of Discourse analysis, which
I have used to analyse the data.

5. Theory and method of Discourse Analysis

5.1. The Theory

In his work on Discourse analysis, Gee, (2005)provides a theory and a method for studying
how language is used to enact specific social activities and social identities. He provides tools of
inquiry and strategies of applying them in analysing data. The tools that are important for my
analysis are social languages, Discourses, situated meanings and Discourse models. The tools
help us to ask questions about what he refers to as the seven building tasks (Gee, 2005, 11),
that we build when we use language and to understand how language is used as it is used. He
identifies the building tasks as significance, activity, identity, relationship, politics, connections
and sign system and knowledge. Gee observes that whenever we use language, we build at least
one of the seven building tasks in more or less routine ways, because of our cultural inclinations
of doing things. In line with these building tasks, discourse analysts can ask questions about
any piece of language-in-use connected to the building tasks (Gee, 2005, 11-19). Alongside the
identity and relationships building tasks, pronouns can help us to recognise the identity and
activities that a speaker is enacting. Pronouns are commonly used when people talk. They code
and convey aspects of speakers’ personal identity and group association (Rowland, 1999). The
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commonly used pronouns in mathematics talk are I, you and we (Pimm, 1987; Rowland, 1999).
In using the pronouns, the referent(s) may be clear for instance I referring to the speaker, and
you to the audience (single or multiple), or they may overlap for instance, I and you can be used
to refer to the speaker, while you and we can be used to detach the speaker from immediate
reference and hence make a generalization. Rowland observes that the variations in the way
speakers use pronouns can be associated with delicate shifts of social positioning of the speaker
in relation to his/her audience, to own up to something as an individual (I) or as a group (we)
or partially dissociate oneself (you). The shifts in social positioning noted by Rowland resonate
with shifts in identities and relationships (Gee, 2005) discussed earlier and hence the more the
reason that the pronouns be used alongside the two building tasks in the analysis. It should be
noted that when analysing utterances involving the pronouns you and we, there is complexity
in decoding the co-referential. Therefore there may be multiple meanings that can be derived.
According to Gee, social languages and Discourses are primarily relevant to how people build
identities and activities and recognize identities and activities that others are building around
them. These tools help us to talk about, and thus construct and construe, the world. Situated
meanings and Discourse models are the primary tools of inquiry that deal with intricacies of
how language is used (Gee, 2005). Gee observes that these latter tools guide inquiry in regard
to specific sorts of data and specific sorts of issues and questions. It is worthwhile noting that
all the tools do not work independently but are integrated one with the other.
In using language, we enact certain Discourses in the same or different contexts (Gee, 2005).
He argues that that Discourses can be understood by situating meanings of words in specific
contexts of use. In order to make sense of the situated meanings, we need to select the patterns
and sub-patterns that are relevant in a particular context. The guide to the selection of the
patterns resides in Discourse models of a persons socio-cultural groups and the social practices
and settings in which they are rooted (Gee, 2005). Discourse analysis can be used to analyse
language practices within one or multiple language environment. In fact when trilingual students
engage with mathematics, they may project themselves as members of mathematics Discourse
community using one language or switching between languages as par their communication need.
Therefore I have flexibly adapted the four tools of inquiry, so as to ask certain questions about
the building tasks in an attempt to understand language practices of the trilingual students
involved in this study.

5.2. Method of Discourse Analysis

Gee, (2005) observes that discourse analysts are interested in analysing situations in which
language is used. Such situations involve the contexts in which building tasks take place. He
refers to the situations as discourse situations.
Any piece of language, oral or written, used in a situational network is composed of a set of
grammatical cues and clues (Gee, 2005). The cues and clues contribute differently to the seven
tasks and they guide us in knowing which of the building tasks are being built. They are carried
out all at once and together and they may be in the same or different social languages.
Trilingual students control many different social languages and switch among them in different
contexts. They also mix social languages in complex ways for specific purposes. In fact they
can mix or switch between different social languages that are drawn from different languages
at the level of national languages such as English or Kiswahili or home languages. As a result,
a range of cues and clues are evident in their social languages.
The cues and clues help to assemble here-and-now situated meanings through which the seven
building tasks are accomplished (Gee, 2005). In turn the situated meanings activate certain
Discourse models. Finally the social languages, situated meanings, Discourse models at play
allow people to enact and recognize different Discourses at work. This study identified similar
patterns of grammatical features that are indicative of particular kinds of social languages that
the trilingual students uttered as they did and reflected on the mathematics task.
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To identify the indicators of cues and clues in the social languages, I have adapted some of
the 26 questions that Gee (2005, 110-113) has proposed and I added other details of language
that appeared relevant to my analysis. I looked at the utterances that illuminated my research
questions in the light of Discourse situations and then took the key words or phrases which I
analysed for cues and clues. In general, I have structured my analysis into three main phases:

1. Identifying the grammatical cues and clues in social languages of students responses to
the algebraic task and in their reflections.

2. Identifying some key word(s) or phrase(s) in the social languages and looking at the
situated meanings that they had. To make sense of the situated meanings, I selected the
patterns of features that were assembled in the particular context and that implicated the
Discourse models at play.

3. Explaining the different Discourses that the students seemed to enact through the social
languages, situated meanings and Discourse models.

6. THE STUDY
5 The data analysed in this paper focuses on first year trilingual undergraduate students of
mathematics of Procity University , a public university in Kenya. Data was collected using
three instruments; questionnaires, clinical, and reflective interviews. A structured questionnaire
(Kothari, 2009) was used to gather the baseline data, which was necessary for selecting interview
participants. A sample of 15 students was selected. They had a range of home languages and
they indicated that they used other languages apart from English while responding to math-
ematics tasks. They also indicated the language in which they preferred for the interviews.
Clinical interviews (Keats, 1997; Minichiello, Aroni, Timewell, and Alexander, 1990) were used
to establish how the students used languages and other non-language stuff in relation to the
mathematics task that was given. The reflective interviews were used to identify, ascertain and
confirm various actions and languages and that were used during the clinical interview most of
which were not visible during the interviews. Semi-structured questions were used to enquire on
some critical moments while the students were engaged with the task. The reflective interviews
also provided data on how and why the participants used each language while processing the
task, in speech or in writing or other non-verbal means. Both interviews were video recorded
and transcribed. Field notes, copies of students worksheets and questionnaire details provided
supplementary data. The transcripts formed the primary data for analysis.
The task that the learners responded to was adapted from the standardized Kenya Certificate
of Secondary Education (KCSE) of 2010 and read as follows:

[Q] A hall can accommodate 600 chairs arranged in rows. Each row has the same number
of chairs. The chairs are rearranged such that the number of rows is increased by 5 but the
number of chairs per row is decreased by 6
(a) Find the original number of rows of chairs in the hall.
(b) After the re-arrangement 450 people were seated in the hall leaving the same number of
empty chairs in each row. Calculate the number of empty chairs per row.

Data from transcripts of the clinical interviews is analysed. It is supplemented by data from
reflective interviews and the questionnaires. The students who switched between English and
home languages were six. Four of the students S8, S6, S15 and S10 engaged with the task by
switching to translate the whole task while two of them S3 and S4 translated parts of the task.
The home languages of these trilingual students are Kiswahili for S8 and S6, Kikuyu for S15
and Kikamba for S10, Luluhya for S3 and Dholuo for S4.

5A pseudonym for the university
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Table 1. Key questions posed during the interviews

Clinical interview question Reflective interview questions
When you first read the question,
what impression did you get? Or
other question that was relevant
based on point of concern.

1. When you first read the
question, what impression did
you get? Or other question that
was relevant based on point of
concern.

2. The question was written in
English, which other languages
did you use as you engaged with
the task?

3. Which other languages do
you use while engaging with
mathematics either in discussion
groups or alone?

4. Why did you use the languages
as you did?

In the analysis, I present detailed analysis of S8 and S3 while I briefly examine the responses
of S6, S10, S15 and S4 in the interpretation of the task. The aim of the brief examination is to
support the findings from the language practices of S8 and S3 and perhaps raise other pertinent
issues in the use of the languages. Furthermore parts of language practices of these students
that involved identifying and explaining cues and clues in the seven Discourse situations are
typical of the language practices of S8 and S3 under the same Discourse situations. However,
since how and why other languages were used was key to my study, the brief analysis focuses
on the aspect of code switching.
In the light of my research questions, during the interview I posed some key questions to the
students. From their responses, I extracted the utterances that illuminated responses to my
questions. With a focus on how they made sense of the task, I have analysed their utterances
in the clinical interviews when they were interpreting the task, which was supported by their
corresponding utterances in the reflective interviews. The questions are outlined in the Table
1 below and the utterances are presented as extracts. Below I present the analysis and subse-
quent discussion of the findings. The findings are that the students engage with activities and
enact identities that people in mathematics Discourse community engage with. Furthermore
they switched mentally between the LoLT and their home languages when engaging with the
task to translate the whole task or parts of it for a range of reasons. Prior to the analysis, I
present brief language and academic background of each student.

7. Analysis and findings

7.1. Translating the whole task

7.1.1. Analysis of S8’s utterances in the interpretation. S8 was 20 years old student at the
time of data collection. His first language is Kikuyu and the language he commonly uses at
home is Kiswahili. He commonly used English and Kiswahili with himself, peers and lecturers.
He scored a Grade A in mathematics and Grade B- in English. At the time of data collec-
tion he was undertaking a Bachelor’s degree in Mechatronics Engineering. S8 switched between
Kiswahili and English in interpreting the task. While this was not evident in his verbal and
written explanation, he explained during reflective interview that he switched to Kiswahili in
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thinking throughout the task.

Identifying and explaining cues and clues in the interpretation
S8 first worked on the task silently and then proceeded to explain from his workings. Below I
analyze his response to what does the question require of you?

Extract 1
S8: This question, because here we have unknowns, we have kind of like before the rearrange-
ment we know that the hall had a certain number of rows and each row had a certain number of
chairs. So you give the number of rows an arbitrary letter like a like I have done here (pointing
where he had written) a. I have said let the number of rows be a then, before the rearrangement,
then I’ve said that because after the rearrangement the number of rows are increased by 5, so
after the rearrangement the number of rows will be (a + 5)

Activity:

S8 was involved in making assumptions and formulating an expression and justifying both
activities. Making assumptions, formulating and justifying are practices that are valued in
mathematics Discourse (Moschkovich, 2002). Making assumptions was evident when he said
”give the number of rows an arbitrary letter like a”. He justified making the assumptions with
the argument that since there were unknowns, then arbitrary values have to be assigned to
these unknowns in an attempt to solve for the rows and chairs. Similarly S8 explained how he
formulated the expression (a+ 5) and justified the formulation. Therefore S8 is recognized as a
student who is involved in the activities of making assumptions, formulating and justifying the
steps he took.

Identity:

In his explanation, S8 referred to we, later to you and in direct reference to his written work,
he used the pronoun I. These pronouns are commonly used in mathematics talk (Rowland,
1999; Pimm, 1987). From the extract, his use of we and you suggest shared understanding
of the conditions set out in the task and the unknown variables. In using these impersonal
pronouns in formal mathematics language, S8 engaged with the task the way mathematicians
do. Later he moved on to explain how to make the assumptions from his own perspective,
which was based on his earlier written work. In using I he shows knowledge and ownership of
the interpretation process again using formal mathematics language. His use of the pronouns
is in line with mathematics register which researchers (Pimm, 1987; Rowland, 1999) argue
that it is not entirely impersonal. Alongside using the pronouns, S8 is presenting himself as
a mathematician, which is evident in the words he uses and how he approaches the problem.
Choosing an arbitrary letter to represent a number which is not known is what mathematicians
do. Formulating and justifying expressions to define or describe a situation are also some of the
things that mathematicians do. S8 is recognized as assuming the identity of a mathematician
at once in a general and a personal perspective.

Relationship:

The use of the pronouns we and you shows that S8 shares his understanding of the task like other
mathematicians do. Later he uses I while explaining how the task should be done from his point
of view. In doing so, he relates with other mathematicians as a student who ably approaches
the task as other mathematicians do while at the same time uses words and modes of argument
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as used in mathematics register and hence formulates the necessary mathematical expressions.
Hence his relationship with the other mathematicians changes from a general relationship to a
personal one.

Politics:

According to the first year mathematics syllabus of Procity University, students are expected to
formulate and solve quadratic equations. Therefore formulating and solving quadratic equations
in the context of the syllabus are social goods. These social goods were worth having in solving
the algebraic task that was at hand. S8 made assumptions using arbitrary values and then
formulated a mathematical expression. In making the assumption, he used formal mathematical
language as used in mathematics Discourse. He then used the arbitrary values to formulate the
mathematical expressions. Therefore S8 can be recognized as a student who distributed social
goods across the task using formal mathematical language within mathematics Discourse.

Connections:

S8 is connecting his arguments with conceptual mathematics discourse (see Sfard, Nesher,
Sreefland, Cobb, and Mason, 1998). This is evident in the way he connected unknown values
of rows and chairs with some arbitrary values within the task which enabled him to formulate
the required mathematical expressions. S8 described the assignment of arbitrary values to the
unknowns and explicitly justified why he did so. By justifying, he connected his conversation
to conceptual mathematics discourse. S8 is thus recognized as a student who made connections
within the task, with conceptual mathematics discourse.

Sign systems and knowledge:

Throughout the Extract 1, S8 used formal mathematics language (in English) as noted in the
discussions above. For example in assigning arbitrary values to the unknown number of rows and
chairs he said So you give the number of rows an arbitrary letter like a. While this language is
acceptable in mathematics discourse, it did not involve words commonly used in making math-
ematical assumptions, but it is clear that he was involved in making an assumption. Therefore
S8 privileged using formal mathematics language in English.
S8 uses English language only in his verbal explanation. With the awareness that he used
Kiswahili and English when working on mathematics when on his own, with peers and lecturers
and the fact that he also uses Kikuyu at home, I inquired about his use of other languages in
this particular task during the reflective interview. He responded as follows:

Extract 2
S8: Kiswahili only · · · even I found the answer using Kiswahili because now I was reading the
question and interpreting it into Kiswahili and even these things I was writing I was saying
wacha hii ikuwe hivi [Let this one be like this] referring to scribbles on arbitrary values on the
question paper so in Kiswahili.
R: Why did Kiswahili come into play?
S8: Because I’m mostly acquainted to Kiswahili as a language; I’m best in Kiswahili than in
English. So it was the language that I was using to interpret now this. So, even though it’s writ-
ten in English here, whatever was coming from my mind was in Kiswahili. I was just writing in
English because it’s like a requirement.
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S8 said that he used ”Kiswahili only”, meaning that he did not switch to Kikuyu in the par-
ticular task. He read the question as it was and interpreted it into Kiswahili. By listening and
observing him interpreting the task, I could not tell that the arbitrary values had been thought
of in Kiswahili since these were all written in English in his worksheet. In using languages that
way, he privileged Kiswahili, his home language, in interpreting the task. 6 S8s use of Kiswahili
was based on the fact that he was more familiar with Kiswahili than English. This resonates
with research findings (see e.g. Parvanehnezhad and Clarkson, 2008) that show that some bilin-
gual students switch between LoLT and home language because they are more familiar with
the home language than the LoLT. Furthermore S8 said that he is better in Kiswahili than in
English. Being better in Kiswahili than in English could probably mean fluency in Kiswahili
since Kiswahili was his home language, he used it at home and with the larger community.
This explains partly why S8 used Kiswahili more than Kikuyu. Furthermore he commonly used
English and Kiswahili with himself, peers and lecturers.
The fact that he only wrote in English was because ”it was like a requirement”. This positions
English as a powerful language in S8’s communication of the task. With such power of the lan-
guage, he communicated in English whereas he would have done the same in his more familiar
language of Kiswahili. After all English is the LoLT at Procity University. The perspective of
English holding more power than Kiswahili in S8’s case is similar to the view that English is
the language through which one can have access to social goods like employment and language
of examination (Setati, 2008). Since initially he had a choice of the language he preferred to be
interviewed, in my view S8 restricted himself to using English in his communication with the
researcher due to the power that English held.
In essence, S8 translated the whole task from English to Kiswahili solved it and then wrote
in English. The two languages had different functions; Kiswahili was a language for internal
communication that he used for thinking and interpreting the task, while English was for exter-
nal communication, in writing and verbal communication with the researcher. He switched to
Kiswahili for the purpose of translating the task due to familiarity with the language. Therefore
code switching supported S8’s participation in competent mathematics Discourses.

Discussion on S8’s interpretation

From the analysis above, S8 made formal mathematics language significant. He used it in de-
scribing, formulating, making assumptions and justifying his workings. He at times positioned
himself as working from a personal point of view and at another as working with other mathe-
maticians. He used language to make connections within the task and with mathematics register,
formal mathematics language, conceptual mathematics discourse and mathematics Discourse
practices. In all his verbal and written explanation, he used a formal mathematics language
in English and in thinking he used Kiswahili. He used Kiswahili because he was more familiar
with it than with English. However, he wrote his work in English because the context required
so, that is it was the expected language in such situations. Since initially he had been given the
option of using any language in his repertoire, I argue that by using English in his reporting
while he engaged the task in Kiswahili, he positioned English as the more powerful language
than Kiswahili.
Therefore S8’s utterances in interpreting and solving the task contain cues and clues for men-
tal code switching, formal mathematics language, and conceptual mathematics discourse, and
general and personal relationship with other mathematicians and in general mathematical Dis-
course practices.

6This contrast of performance in Kiswahili and English was not based on any available academic records.
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7.1.2. S8 Negotiating the situated meaning of key word ”hall”. S8 situated the meaning of
a hall from the perspective of an auditorium or a theatre. He explained his experience with
theatres in high school, as elevated from front to back. S8 had experience with theatres in that
as a student of English and Kiswahili literature in high school he attended performances of a
range of English and Kiswahili literature set books in theatres. He therefore was operating with
the Discourse model of a hall as an auditorium or a theatre.

7.1.3. Emerging Discourses. From the discussion on the cues and clues in S8’s language prac-
tices in interpreting the task and situated meaning and accompanying Discourse model, S8
”pulled off” a Discourse of a student who combined and integrated verbal words with formal
mathematics language, and conceptual mathematics discourse, mathematics register, and math-
ematics Discourse practices. He did so by switching from English to Kiswahili to translate the
whole task in his thinking to interpret the task. He assumed both general and personal perspec-
tives of a mathematician whose view of the hall in question was an auditorium or a theatre.
In the next section, I analyse in brief how S6, S10 and S15 used their two languages as they
interpreted the task. The analysis supports the findings from the analysis of S8 utterances and
raises other pertinent issues on language practices in the interpretation of the task.

7.1.4. Language practices of S6, S10 and S15 in the interpretation. S6 was 21 years old Mecha-
tronics Engineering whose first language is Kikuyu and his home language is Kiswahili. He
explained what the task required of him in both verbal and written forms in English language
only. To be able to do this, he translated the whole task to Kiswahili in an effort to understand
the task better. This was because he had a better understanding of Kiswahili than English.
S10 was a Civil Engineering student aged 19 years. His home language is Kikamba. He rarely
used either Kiswahili or English at home. All the three languages were relevant to him when
engaging with mathematics such that he used all of them when consulting with himself and
when discussing with his peers. With the lecturers he used Kiswahili and English. In working on
the task, S10 used English throughout his written and spoken explanation of the interpretation.
In his reflections, he revealed that he translated the whole task to Kikamba in an attempt to
interpret it, because Kikamba was the more familiar language. Below are his reflections.

Extract 3
R ... Did other languages come anywhere in between when you were responding to the question?
S10: Yeah, yeah, yeah. First after seeing the question, in all my studies, I try to interpret in
Kikamba, which I’m more conversant with. I read in English then I interpret it in Kikamba,
which I can understand more than English.
R: Are there particular parts or it is the whole question that · · · .
S10: The whole question.
R: How do you put it in Kikamba?
S10: I do it in Kikamba then I transfer to the paper in English.
R: Is it (translation) something that you can write?
S10 No, no, no. Yeah, I’m more conversant with Kikamba more than any other language.

The Extract 3 shows that S10 not only translated the task that was at hand but he did so
all the time in other tasks. He does so because he is more familiar with Kikamba than Eng-
lish. He interpreted the task to Kikamba in his mind and neither verbalised it nor wrote it in
Kikamba. It is interesting that when requested to write the interpretation in Kikamba, S10 said
an emphatic ’no’ while still arguing that he is more conversant with the language more than
any other. While this explanation may seem to contradict his use of Kikamba, it in a way shows
that conversational proficiency in a language is not commensurate with written proficiency (see
Gerber, Engelbretch, Harding, and Rogan, 2005). He used English to communicate the task
expectation and interpretation with the researcher. Therefore, Kikamba his home language was
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significant for understanding and interpreting the task while English served to communicate
with the researcher.
Similarly S15 read the task in English then interpreted the whole task internally in his home
language, Kikuyu, for better understanding and he wrote out the solution process in English.
This is a practice that he engaged with even in other tasks. Similar to S10’s position, S15 he
could not write the translation in Kikuyu though he could speak the language.

7.1.5. Discussion on translating the whole task. The language practices of the trilingual stu-
dents S8, S6, S10 and S15 above show that they mentally translated the whole task to home
languages in interpreting the task because they were more familiar with the languages, then
they were in English. This finding supports Hoffmann’s finding that some trilingual students
use LoLT for external communication while their other languages are used for internal commu-
nication (2001). Furthermore the students translated tasks at all times similar to how English-
French bilingual students mentally translated French text to English (see Kern, 1994). Their
translations are associated for the common use of the languages as home languages for com-
munication within their home environments (S8, S6, S10, and S15) and in mathematics group
discussion (S8, S6 and S10). The fact that their switched to their home languages because they
were the languages of common communication at home, are similar to the reason why English-
Vietnamese bilingual students in Australia switched between their two languages (see Clarkson,
2006).
Setati, (1998) observes that translation may pose challenges when everything is to be trans-
lated from one language to another. Setati observed that some of English mathematical terms
may not be used or are readily not available in home languages. The students in this study
translated the whole task and did not report any challenges in translating the task. The fact
that the task that the students engaged in did not have technical terms could be reason that
they did not report translation challenges from English to their home language and vice versa.
Next I analyse the utterances of S3 and S4 who translated parts of the task into their respective
home languages.

7.2. Parts of the task

7.2.1. Analysis of S3’s utterances in the interpretation. S3 was aged 19 years at the time of
data collection. His home language is Luluhya, the language he commonly uses with his family
and with little use of English. In the questionnaire, he indicated that he communicated with
himself and peers more in English than he does in Kiswahili, while he used both English and
Kiswahili with lecturers. He was pursuing a degree in Geomatic Engineering and Geospatial
Information Systems.

Identifying and explaining cues and clues in the interpretations

S3 explained and wrote his interpretation simultaneously. In responding to what the question
required of him, he explained:

Extract 4

S3: so the total number of chairs writing total number of chairs is 600 then each row
has the same number of chairs. If it is 20, twenty, twenty per row is the number. Reading from
the question he continues, so you just let the original number, original number of rows before
the increase of rows be a value let’s say x. So after the increase the new number of rows is now
(x + 5), yes after the increase. But the number of chairs per row is decreased by, by 6. So if
there are x rows initially and the chairs the total number of chairs are 600, it means that the
number of chairs per row in this will be 600/x
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Activity:

S3 used a specific assumption about the number of chairs that is 20 chairs per row which seemed
to lead to the general assumption on the number of chairs. The reason as to why he first used a
specific assumption before coming up with the general assumption about the number of chairs
does not seem obvious. It could probably be explained by his response to the question of the
impression the task created in him, which he associated with a real life situation as he explained
during the reflective interview;

Extract 5
S3: First of all, when I read the question I looked at it and I tried to relate it to real life situa-
tion. When I / I read it further, I imagined myself arranging that Inaudible may be somebody
has been appointed to arrange chairs in a certain hall. I was imagining if it were me, what could
I do?
R: The real life situation?
S3: It’s like there is a meeting in a certain hall, and may be the guests have been invited and
everybody. So the chairs are supposed to be arranged, may be I’m there and I can be consulted
/ to arrange those chairs. So I was imagining, I’m the one to be appointed to arrange those
chairs, what could I do?
R: Did that (real life situation) influence how you solved the problem?
S3: Yes in that, I was now seeing things like physically not like on the paper, because when I
was focusing, the chairs as objects. That really motivated me, helped me a lot in solving that
question’.

S3 explained his view of the real life situation as one in which guests had been invited to
a meeting in a hall and he was required to arrange the chairs for them. The chairs were physical
objects that assisted him in solving the task. While this activity was not visible when he was
interpreting the task, it was important in understanding how S3 came up with his assumptions.
S3 is recognized as making assumptions based on a real life setting a practice that is common in
mathematics Discourse. Identity: He refers to ”you”, ”let” and ”let’s” in making an assumption
on the number of chairs. ”Let” is commonly used in formal mathematics language in making
assumptions in the mathematics Discourse community and is a defining characteristic of mathe-
matics register (see Halliday, 1974 in UNESCO, 1974). Using the three referents, S3 positioned
himself as working with and like other mathematicians who share the knowledge of making
assumptions. In so doing, he assumed a general identity of being one of the mathematicians.
Relationship: Following the general identity of belonging to mathematics community, S3 created
a general relationship with the community. Connections: S3 makes connection within the task,
and with formal mathematics language and calculational discourse (Setati and Adler, 2000;
Sfard, Nesher, Sreefland, Cobb, and Mason, 1998). This is evident in that he initially takes on a
specific assumption of the number of chairs and then connects it to a general assumption of the
number of rows and finally to the number of chairs. Further he describes the steps he follows
using formal mathematics languages. Sign systems and knowledge: Throughout the task, S3
used English. In the questionnaire he had indicated that he engaged in mathematics in English
and Kiswahili, to know whether this also applied in the given task, I enquired how he used
other languages.
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Extract 6

S3: (Laughs) in interpreting that question, yeah to some extent. For deeper understanding of
the question, when I read it I tried to interpret it in my language which is Luhya . I tried to
translate the words written there in Luhya using my brain.
R: Are there specific words that you may have used in Luhya?
S3: Yes / like chairs is ’izidindeve’, ’Izidindeve’ are arranged in rows meaning chairs arranged in
rows, arrange is ”kubanga’a”. When I had these two words, I now know that, I had the deeper
meaning of this question, because I understand this language better, it’s my original language,
the language that I learnt.

S3 explained that he translated words like chairs and arrangement mentally to emphasize their
meaning (Merrit, Cleghorn, Abagi, and Bunyi, 1992). It was necessary for him to understand
the words chairs as ’izidindeve’ and arrangement as ”kubang’a” so that he could experience a
deeper meaning of what the task was all about. He translated these words into Luluhya because
he understood the language better, as he put it; Luluhya was his original language, the language
that he first learnt. His statement suggests that he strongly relates with Luluhya and under-
stands it better than English and Kiswahili languages. It was the more familiar language and
hence was most relevant in interpreting the task. However, the words were neither verbalised
nor written while he was engaging with the task. While he understood Luluhya better than
other languages, I wondered why he preferred to be interviewed in English. In his explanation,
English is positioned as the official language that should be used in engagements such as the
interviews.

Extract 7

R: Much as you understand the Luluhya language, you preferred to be interviewed in English.
S3: (Laughs) the language I thought that the English is the most official to be used in inter-
views.
R: Otherwise,
S3: if they could allow laughs for any other local language then I could choose on this Luluhya. 7

From the utterances in Extract 7, S3 shows that he would have preferred to be interviewed
in Luluhya if it was allowed. When he was given the opportunity to choose his preferred lan-
guage for the interview, S3 chose English. This shows that he may have avoided using his home
language because English was the official language of communication in such settings particu-
larly at university level. His choice of English shows the tacit power that the English language
held in S3’s language practice. Furthermore, when he says that ’if they could allow laughs for
any other local language then I could choose on this Luluhya’, it shows that the allowance given
by the researcher in the context of data collection was not enough encouragement for him to use
his home language. Therefore S3 remained in English language for his verbal communication
and switched to his home language in thinking due to the context in which he found himself at
the time of the interview.

Discussion
It is observed that S3 made the required assumptions based on some real life situation.

Relating a task to a real life situation is a common practice among mathematicians. He used a
single variable to form simple equations. Furthermore, he used plural pronouns which suggested

7Luhya language is also referred to as Luluhya

Imhotep Proc.



Vol. 3 (2016) Language practices involving two languages 63

that he identified with and worked in collaboration with members of mathematics community.
S3 switched to Luluhya in thinking to capture the essence of the words chairs and arrangement.
He argued that when he translated the two words he gained deeper meaning of the task. He
translated the words in order to express them in the language that he was more familiar with.
In contrast, S3 was restricted from switching to his home language in his verbal communication
by the interview context. He thought in such context, English was the most appropriate and
official language. This is consistent with the situation in which bilingual students remained in
the LoLT (Planas and Civil, 2008; Planas and Setati, 2009), he perhaps did not feel permitted
enough, to use his home language, Luluhya. In fact like the bilinguals in the study of Planas
and Setati, (2009) he probably did not view his language as valued in such context. S3’s self-
restriction to code switch left me wondering how else he would be convinced that he could
switch between different languages as he communicated verbally in the given context. In his
explanation, S3 makes connections with mathematics register, formal mathematics language and
calculational discourse which suggest that he identified himself, and related, with mathematics
Discourse community. S3’s utterances contained cues and clues for mathematics register, formal
mathematics language, calculational discourse, generality, and code switching during thinking,
and mathematics Discourse practices.

7.2.2. Situated meaning of the words ”chair” and ”arrangement”. According to S3, his un-
derstanding of the task capitalized on grasping the meaning of the words ”chairs” and ”ar-
rangement” (see Extract 6). He situated the meaning of chairs and arrangement in a real life
situation of a hall. He simulated himself arranging the chairs in the hall in which a meeting
was scheduled which helped him to view the chairs in the task as physical objects (see Extract
5). It seems that it is in such an environment that he could talk about chairs as ’izidindeve’
and to arrange as ’kubang’a’. Thus he situated the meanings of chairs and arrangement rela-
tive to his socio-culturally defined experiences with how he could arrange the chairs in such a
familiar setting. He applied the situated meanings against a Discourse model of a hall in his
familiar environment and the socio-cultural practices involved in such an environment to which
he belongs.

7.2.3. Emerging Discourses. From the preceding discussion on how S3 used language, he is
recognised as having pulled off a Discourse of combining and integrating English and his home
language in interpreting the task, mentally translating key words of the task into his home
language for the sake of gaining deeper understanding. Further he combined and integrated
formal mathematics language, mathematics register, calculational discourse and mathematics
Discourse practices and he identified himself with mathematics community. He also operated
in the Discourse of a student who viewed the use of other languages in their communication
with the researcher as restricted. In the next section I analyse how S4, used languages when he
interpreted the task. The brief analysis focuses only on code switching between English and his
home language Dholuo. The analysis supports the findings from the analysis of S3 utterances.

7.2.4. Language practices of S4. S4 commonly spoke Dholuo at home than either English or
Kiswahili, in fact Dholuo was his home language. When doing mathematics alone and with peers
he did it in English and Kiswahili while he used English with the lecturers. He was enrolled for
a degree in Geomatic Engineering and Geospatial Information Systems. In responding to what
the task required of him, and in fact throughout the task, S4’s verbal and written explanations
were in English. I asked him during the reflective interview if, and if so when, he used Kiswahili
and/or Dholuo in solving the task. He responded that he translated the task at the interpretation
stage; in particular he translated the third sentence to Dholuo because he found it difficult to
interpret English. In his words, Dholuo was the language that he was more familiar with and by
switching to translate the third sentence; it was easier for him to understand the rearrangement
and the task at large. Therefore S4 privileged to translate the part of the task he found difficult

Imhotep Proc.



64 Njurai E.W.

into his home language in order to understand the task in a better way. I observed that when
I asked S4 to say more on his translation, in his response he first asked whether he can say
it in Dholuo to which I responded in the positive. S4’s request to use Dholuo shows that it’s
uncommon to use other languages other than English especially in external communication at
this level of education in Kenya. His request to verbalise and write in Dholuo resonates with
S3’s response when he said that if he was allowed he would have used Luluhya in the interviews.

7.2.5. Discussion on translating parts of the task. Students can switch between languages in
order to express words or phrases in the more familiar language. S3 and S4 switched to Luluhya
and Dholuo respectively because the languages were more familiar to them than the LoLT. At
the same time they needed to gain better understanding of the task that was at hand. While
S4 had challenges in understanding the third sentence and hence the translation, S3 needed
further understanding beyond what he had captured in English.

8. Summary of findings on language practices involving the use of English and
home language

The major findings of the case study reported here are that the language practices of the trilin-
gual undergraduate students are identified with mathematics Discourse and with the use of
two languages in their mathematics engagement. They participated in mathematics Discourse
practices in a range of ways similar to those indicated by Moschkovich, (2002). While only the
findings of S8 and S3 are presented in detail, in most other aspects, the language practices of the
other four students were similar to those of S8 and S3. The language practices that show that the
students used languages to engage with mathematical Discourses include: making assumptions,
identifying variables, and formulating simple equations and justifying (or not) their workings
in logical manner. Furthermore they constructed sentences that were rich in words and modes
of argument used in mathematics register, formal mathematics language, and in mathematics
Discourse. Their approach and ways of working as well as the use of pronouns positioned them
as individuals and/or as members associated with mathematics Discourse community, thus as-
suming individual and/or as well as a general identity and relationship. It can be observed that
the students had acquired control over mathematics register, they engaged with conceptual or
calculational mathematics discourses and in general participated in mathematics Discourses
switching between the two languages.
The language practices that emerged, involved English and home languages. The home lan-
guages were either first languages or Kiswahili. The first languages are however not taught or
used at university level in Kenya while Kiswahili is taught as a subject. Despite that the home
languages were resources for interpretation and understanding the task. For these students,
code switching was necessary in making sense of the task. The purposes of code switching were
translation and context in which they found themselves. Out of the six students, four students
switched mentally to translate the whole task and did so all the time while the two others
switched to translate parts of the task, to emphasize meanings. This latter case of translation
is in some way similar to how bilingual Persian-English students translated certain words due
to habitual use of the words in Persian language (Parvanehnezhad and Clarkson, 2008). They
all switched to the home languages because they were more familiar with the languages than
they were with English, the LoLT. The interview context restricted S8 and S3 from using their
home languages, arguing that English was the appropriate language in such contexts.
The two languages had different functions: home language was for translating and exploring
meaning mentally and English was for communicating verbally and in writing with the re-
searcher. Furthermore S3, S4 and S8 were of the view that English was the language for formal
communication and hence the need to use it when they engaged with the researcher. This
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positioned English as the more powerful language of communication in such contexts of in-
terview. Thus while the students home languages are not the LoLT in mathematics teaching
and learning; they were resources for the students as they engaged with the algebra task. The
trilingual students used two languages in their repertoire similar to how bilinguals students do
(Moschkovich, 2002; Planas and Civil, 2008; Planas and Setati, 2009) and multilingual mathe-
matics (Adler, 1998; Setati, 2005) and in fact in line with the observation by Hoffmann (2001)
that trilinguals may use two languages in their reperrtoire as bilinguals do. Therefore the LoLT
and the home languages that the trilingual students used in in verbal communication, writing
and thinking in relation to their social culturally defined experiences, shaped the identities they
enacted and activities they were engaged in within mathematics Discourse and in the use of
their trilingual language facility.

9. CONTRIBUTIONS OF THE STUDY

The findings are important to inform LiEP in Kenya how the some undergraduate students
position the home languages when they engage with mathematics. The students positioned their
home languages as the dominant languages that facilitated interpretation, and understanding
of the task, and English was dominant in the initial reading, verbal reporting and writing. The
home languages were used in solitary and mental engagement with the task. The fact that
they mentally engaged their mathematics in other languages was most unexpected because the
students had learnt mathematics in English for the previous nine years and like in the study
by Clarkson, (2006) one would have expected that they had learnt the LoLT sufficiently for
them not to switch codes. Furthermore, their mathematics grades did not suggest that some of
them could be struggling with understanding mathematics presented in English. The LoLT was
used as a language of external communication while the home languages functioned as internal
languages of communication. Thus while Kiswahili and home languages are not LoLT’s beyond
Standard three, the languages had a social value and worth in students interpretation and
understanding of the task. Thus while English is the official and dominant language of teaching
according to the LiEP, home languages played a significant role in students interpretation and
understanding of the task. Furthermore, this finding has added to scholarly work (Clarkson,
2006; Parvanehnezhad and Clarkson, 2008) by establishing that code switching is not a reserve
of students who are learning the LoLT rather code switching is a reality even for trilingual
students who are competent in LoLT when they engage with mathematics.
In the global perspective, the findings contribute to the field of mathematics education in
trilingual contexts. The fact that no research on language practices have been conducted among
trilingual mathematics students (Phakeng, 2013) makes the findings of this study significant in
field of mathematics education. As has been shown, the trilingual students in mathematics have
specific ways of using their three languages (Hoffmann, 2001) which they have demonstrated in
this study. That is they functioned like bilinguals. Therefore this study has provided insights
on whether, how and why trilingual students use their languages as they do when engaging
with mathematics tasks. Further since in this study trilingual speakers are considered as a
special case of multilingual speakers, the findings of this study have helped to broaden the view
of the language practices of multilingual students already investigated. Furthermore research
on mathematics education in bi/multilingual contexts has commonly been concentrated at
primary and secondary levels (see e.g Bunyi, 1997) with some exception in college level (Chitera,
2009). The study reported in this thesis was conducted a university level and probably the
first research on language practices at university level. Findings of this study will give clues
to mathematics lecturers of what transpires linguistically in their trilingual students as they
engage with mathematics tasks.
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10. Conclusion

In this paper, I have analysed language practices of six trilingual undergraduate students of
mathematics who switched between two languages in engaging with a mathematics task. The
languages were the LoLT and the respective home languages of the students. Using Discourse
analysis (Gee, 2005), the language practices of the six trilingual undergraduate students have
been analysed in an effort to communicate the socially situated identities and activities that
students enacted as they engaged with a mathematics task. The analysis helped to understand
whether, how and why the trilingual students’ use language as they do when they engage with
mathematics tasks.
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to innovation. Not only does the 21st century workforce require
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ers teachers of mathematics in handling the bigger challenges of the
21st century education but also enables students to succeed in todays
world. When we think about collaboration, many different types ex-
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fession, one needs a mentor to help guide us through the first years
of the profession. This is where collaborations start. However, col-
laborations in education should never stop and should always be on
going, as there is always something new to learn. This presentation
will outline why collaboration in education is important for both the
mathematics educator and student. In addition, the presenters will
also outline personal examples of collaborations and provide some
ideas on how to obtain and maintain collaborators. This, we be-
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Abstract. Mathematics, problem solving, and critical-thinking are key skills to innovation.
Not only does the 21st century workforce require mathematics skills for success in everyday
life but also for scientific advancement and technological development so as to enhance
global competitiveness. Since teaching as an individual process in the 21st century classroom
is no longer effective, mathematics educators should embrace practices that foster 21st
century skills to their learners. Collaboration is a key skill that not only empowers teachers
of mathematics in handling the bigger challenges of the 21st century education but also
enables students to succeed in today’s world. When we think about collaboration, many
different types exist. Most of all major turning points in our history were motivated by a
collaborative effort. With any new teacher entering the profession, one needs a mentor to
help guide us through the first years of the profession. This is where collaborations start.
However, collaborations in education should never stop and should always be on going, as
there is always something new to learn. This presentation will outline why collaboration
in education is important for both the mathematics educator and student. In addition, the
presenters will also outline personal examples of collaborations and provide some ideas on
how to obtain and maintain collaborators. This, we believe, can help prepare educators and
learners for the challenges in life ahead.

Mathematics Subject Classification (2010). 11B83 (primary), 11J71, 37A45, 60G10 (sec-
ondary).

Keywords. Kenya, United States, mathematics, mathematics educators, 21st century skills,
innovation, collaboration.

1. Introduction

Collaboration is a process of working together to reach a goal by putting talent and expertise to
work. When we think about the word “collaboration,” many different types exist. In the United
States, most of the major turning points in our history were motivated by a group of people by
a collaborative effort. These events such as the Declaration of Independence in 1776, the civil
rights movement, and gay and lesbian rights would not have been possible if not for a select
group of people who wanted change. In Kenya, the much enjoyed and celebrated independence
would not have been possible if it were not for the collaboration of the famous Kapenguria six
and a few more others.
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In education, the days of having one teacher in the classroom with thirty or more stu-
dents being the only primary source of where students learn are non-existent. The 21st century
teacher is not simply coming to school, teaching, grading, talking to parents, and going home.
The 21st century teacher is being inundated with seminars, conferences, individual education
plans, emails from parents, good examination results and new teaching technologies to adapt to
the new teaching practices for the millennial generation. Today’s student too need to experience
the environment they will enter as modern day workers and develop higher order thinking skills
such as effective communication, collaboration, and being adept with using technology that
they will need in the 21st century workplace. The 21st century skills therefore form an essential
component of modern day learning and if properly inculcated into learning can reform it for
the better. The educational practices of the traditional classroom are thus no longer effective
and teachers must develop new teaching strategies that are radically different if success is to be
realised. As Connelly and Clandinin (1994) point out: The horizons of our knowing shift and
change as we awaken to new ways of “seeing” our world, to different ways of seeing ourselves
in relation to each other and to the world. We begin to retell our stories with new insights, in
new ways. In this paper, we explore four key points:

1. Why collaboration in education is important
2. The importance of collaboration for the 21st century educator and for the students
3. We will outline our personal examples of collaboration and what they mean to us, and
4. How to obtain and maintain collaborators.

2. Why is Collaboration Important?

Collaboration is the ability to work effectively with others, including those from diverse groups
and with opposing points of view to achieve a common goal by solving problems, inventing,
creating and producing results (Saxena, 2013). Now more than ever, two or more teachers and
or students explicitly agreeing among themselves to meet and accomplish a particular goal
or goals is a vital part of education (Clift, Johnson, Holland, & Veal, 1992). With the ever-
changing world and the rate at which technology is growing, teachers need to have the latest
and most up-to-date teaching practices and best practices at the ready to get students ready for
global competitiveness. For Clandinin (1994), collaborative research projects are “attempts at
establishing research relationships founded within conversations. Through these conversations,
a mutual trust between the individuals is obtained with the openness and willingness to listen to
other’s point of view. Students need to get latest information and ideas from global perspective.
Robinson and Darling-Hammond (1994) have identified 10 characteristics required for achieving
successful school-university collaboration:

1. Mutual self-interest and common goals.
2. Mutual trust and respect.
3. Shared decision-making.
4. Clear focus.
5. Manageable agenda.
6. Commitment from top leadership.
7. Fiscal support.
8. Long-term commitment.
9. Dynamic nature.

10. Information sharing and communication.

We believe these are the ingredients to a successful and healthy collaboration in academia
no matter the discipline. It is also important to note that collaboration builds strength among
the participants. With the diverse knowledge from persons coming together, new ideas are
formed from old ideas and practices. As Carse (1986) points out, “Power is never evident until

Imhotep Proc.



Vol. 3 (2016) On Collaboration 71

two or more elements are in opposition.” Collaboration is a means to hearing a diverse body of
knowledge and to build upon that knowledge to benefit not only the instructors but also the
21st century student.

3. Why is Collaboration in Education Important?

Collaboration is important because through it we can learn more and better by supporting
each other emotionally and committing to cumulative efforts and effects. Studies and research
are evident of the fact that better teaching and learning outcomes are achieved when teachers
work in collaboration with each other. Working together encourages and contributes toward the
achievement of a common goal.

Collaboration promotes further discovery in a research topic, classroom lessons, and
provides new avenues of thinking and consideration that may have never been considered before.
As similar to networking and meeting people at conferences, collaboration paves the way for
ideas to flow among educators and students as well. It widens your circle of people you meet
along your educational career and through a collaborative project, other ideas may formulate
in terms of research, textbooks, and teaching practices. One can always improve and should
always be willing to try new things. With the millennial generation, students are asking the
question, “What will I use this for in life?” Simply teaching the pure mathematics engraves in
our minds from our schooling years is NOT enough for our students. Students need to acquire
21st century skills for survival. Collaboration for the 21st century professors on how to teach
students new skills they need and applications are at an all time high. They have a positive
influence on student interest and engagement. Lesson study by Japanese teachers is one such
gesture reported to have great impact on teaching and learning.

The importance of collaboration for the 21st century educator and the student Accord-
ing to Saxena (2013), the attitude of professional privacy is most prevalent among teachers
of Mathematics. When it comes to their performance in the classroom, most teachers tend to
restrict themselves and this hinders their growth, awareness and keeps them restricted to their
conventional teaching practices and ideas. It should be realized that professional development
and growth hugely depends upon effective teacher collaboration. Formal and informal collab-
orations help teachers learn a lot from each other and to get the most out of them teachers
should seek each other, ask for advices and share how they work, they should spend time, help
each other and build relationships. They should observe as many colleagues as possible to see
how they teach or learn and seek out the ones they’d like to emulate. They should ask ques-
tions regarding student data, instruction, discipline and must be prepared to share their own
knowledge. Systemic, critical and creative thinking skills which teachers gain through conver-
sations and collaboration with colleagues should be encouraged so that the work they do with
their students. They should bring up topics they want to discuss so that they can get ideas for
strategies from each other. They can also analyze outcomes of what their students are doing
either content-wise or may be 21st century skills as that gives them a chance to try things
out in a collaborative setting before they work on them with their own students. Focus on
skills transforms teachers from being mere knowledge givers to facilitators on how the relevant
knowledge and skills can be acquired. This will help prepare our students for a future in which
they become capable leaders of tomorrow.

4. Our personal example of collaboration what what they mean to us

In 2007, a collaboration between Prof. Dr. Kaisser of University of Hamburg in Germany and
Owiti connected Owiti to Prof. Dr. Thomas Janke of the institute of Mathematics in the Uni-
versity of Potsdam in Germany who later invited Owiti to the institute and became a guide
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in his PhD research and thesis writing. Besides, Dr. Bennard Bari, the academic director of
AIMSSEC in South Africa, through Dr. Rejoyce Gadhi also extended an invite to Owiti in 2014
to take part in research and in service training programme for teachers of Mathematics. Owiti’s
most enriching collaboration is that with Prof. Olszewski (co presenter) in which apart from
writing conference papers like this one and international journal publications, Owiti has bene-
fitted by getting access to some of the latest publications and ideas on Mathematics Education.
Owiti also have ties with Prof. Jill Adler of Wits which will lead to being more grounded on
cutting edge research in Mathematics Education. A journey of miles starts with a few steps.

Our other personal examples of collaboration deal with Prof. Olszewski’s first grant on
the use of effective study skills using Exam Wrappers. In this grant, the Director for Student
Initiatives teamed up with Prof. Olszewski to design question prompts to motivate students to
use specific study skills for a Math of Money class. In addition, two of Penn State Behrend’s
tutors were brought in to share their perspectives on how they study. Prof. Olszewski and
Prof. Daniel J. Galiffa established the installation of the 362nd Chapter of Pi Mu Epsilon at
Penn State Behrend on October 12, 2012 through a collaborative and shared vision. Both men
wanted to promote the mathematics excellence Penn State embodies in the mathematics major
and recognize the students for their love of mathematics. Prof. Olszewski has also developed
two courses at Behrend, the Mathematics of Money and a Hybrid College Algebra I class.
Mathematics of Money was developed through the shared knowledge of several individuals at
University part and the hybrid class was developed in conjunction with the nursing department
as the class has specific focus for nursing students and with Jessica Resig, Director of the World
Campus at Behrend. Lastly, Prof. Olszewski is currently piloting a study on online homework
and if it can be used in a mathematics laboratory setting with instructor and tutoring assistance
to help students understand concepts more effectively in College Algebra through PreCalculus.

5. How to obtain and keep collaborations

For a beginning teacher, this maybe a hard venture at the start. We offer the following sugges-
tions:

a. Attend conferences and section NeXT meetings are full with other young faculty and
seasoned faculty who are more than willing to pass down their knowledge to you. Always
listen to others and ask questions at these meetings. In addition, be willing to travel to
conferences like this one. The chances of meeting others in your same field are greater.

b. Be not afraid to talk to people no matter what their ranks maybe, this includes high school
teachers. Sometimes, new faculty can be intimidated by higher ranked faculty but don’t
be. By asking them questions and advice, you may be more surprised how willing they
maybe to offer some good advice. There is also a lot that can be learned about incoming
freshmen by collaborating with high school teachers in your area. Take some time to reach
out to your local high schools to get the inside perspective to the next incoming class for
the fall semester.

c. Join the MAA or AMS or any Mathematical society. There are always many things one
can do to help grow the amount of people you meet for possible common ideas.

d. Talk to your colleagues at your university as sometimes, one of your best collaborators
maybe next door to your office. In short, get out of your office.

e. Keep conversations going on email, phone, etc. Have clear goals by making sure all people
have a passion for the topic of interest, and be willing to change the course of your research
and try different things.

f. Be ready for “no” answers too. Not all collaborations can happen and one must be willing
to accept this.
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g. Write down your conversations, as ideas tend to leave the brain quickly when they are
verbally talked about quickly.

There can be a lot more other strategies that schools can adopt to invite their teachers
to collaborate with one another. Here are some strategies pertaining to real-life practices to
help promote teacher collaboration:

(a) Video tape and discuss lessons: Teacher can videotape themselves while teaching a lesson
and share those videos in small focus groups. The group members can watch the lesson
and provide the teacher with feedback. This can give teachers time to have constructive
conversations about the quality of instruction, teacher assignments, and student work.
Consequently, discussions can lead to changes in instruction and student assessments.

(b) Make the most of interactions in Staffrooms: The staffroom is always the most appropriate
place in a school for spontaneous interactions and sharing. Here, teachers find it comfort-
able to connect with each other, and the conversations they have often get them interested
in what is being done in other classes, what teaching practices are being followed and how
much progress the students are making. Participate in staffroom interactions to increase
popularity of informal observations. This also encourages you to be part of other teacher’s
classrooms and observe their teaching which is a direct result of becoming interested in
the discussions you have in the staffrooms about the teaching strategies. Teachers who
are experts in different areas should not shy away from sharing their knowledge because
it does not only benefit other teachers but also students.

(c) Encourage Professional Learning Communities (PLCs): Teachers should form voluntary
regional collaborative groups in which they come together regularly to learn about and
focus on particular topics. This will help teachers put what they learn into action, and to
provide a comfortable environment where teachers are free to take professional risks. The
first step in creating an effective learning community is to develop a shared vision, mission,
and goal. If all teachers buy in, the collaboration will be meaningful and so provide more
effective learning experiences for students. These communities can be developed with the
help of a variety of resources such as websites, books, blogs, and videos that provide sample
materials and information.

(d) Collaboration should be regular and scheduled: Experienced teachers should work closely
with beginners to help them implement new curriculum and strategies and provide support
and feedback. There could be scheduled weekly meetings during the school day in which
teachers collaborate, set up observations, and provide feedback to one another. We hope
these practices encourage teacher collaboration and you can adopt them in your own
schools, colleges or universities to add a significant element to the professional development
of and teaching practices by teachers.

Not all collaborations are a win, however, working with each other, we can always learn
something new. Collaboration is not easy. Often times, there can be disagreements, arguments,
and sometimes, feelings can be hurt. However, if we don’t try new things and talk to fellow
colleagues, how will we know what else is out there? How we will know if there is a better way
to teach a simple concept as adding two unlike fractions? As Olson (1995) points out, “What
is problematic to us provides the impetus for future learning as we try to understand ourselves
and others, including the students in our case.”

6. Conclusions

Many teachers today feel overwhelmed by the wide range of their students’ learning needs and
levels of preparedness. The educational practices of the traditional classroom are no longer
effective and teachers must develop new teaching strategies that are radically different from
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those employed in the traditional classrooms. The modern day classroom should be more cen-
tered on students and teachers should take the role of facilitators and guides instead of being
mere providers of knowledge. They must ensure that they engage their students in learning and
provide effective instruction using a variety of instructional methods and following different ped-
agogical approaches aided with technology. To achieve this they should be active participants
in their own learning and must seek out professional development to improve their performance
and their students’ learning.

Teaching and learning in isolation are very restrictive and hinder progress. Learning
in groups enhances the scope of learning and develops critical thinking. Collaborative learning
redefines traditional student-teacher relationship in the classroom. Technology plays a big role
in developing all of these characteristics for modern classrooms. These classrooms enhance the
learning experience and better prepare students for higher education and workforce. We can
accomplish more together than even the best of us can accomplish alone. For collaboration
to produce results, group members should see each other as having different resources in the
form of information, cognitive styles, cultures, decisions, etc., and should also understand that
they have come together as equals to do a job. The problems we face today can be better ap-
proached through community effort because for complex problems or for a better understanding
of any problem, multiple perspectives are required to analyze situations, imagine solutions and
develop strategies to achieve them. What’s most needed is the commitment that comes from
collaborative work in order to follow through on our plans. Embrace the wisdom of crowds.

Collaboration is something that does not necessarily come naturally and working effec-
tively with others is a challenging task in itself. Effectual collaboration requires training and the
development of key personal skills. If teachers want their students to work together effectively
they should explicitly teach and model collaboration skills. These skills include Active listen-
ing, Respect, Manners, Positive Attitude, being focused and Social Awareness. Simply telling
students to work together wouldn’t result in productive collaboration. Teachers should make
students part of activities and projects where they find reasons to collaborate in order to accom-
plish a common goal. Students should be taught how they can be good and responsible group
members through modelling, role playing, discussion, and facilitating. To foster the process of
collaboration, teachers should adopt the terminology of teams rather than groups, since teams
focus on accountability and commitment, are formed for a purpose and operate through norms
and shared expectations. They should incorporate and adapt the high-performance principles
common in a working environment to teams in the classroom. This requires time, good coaching
skills, a focus on the quality of interaction between students, and a set of team tools, including
contracts, rubrics, and exercise. Here are some ways in which collaboration can be taught and
learned:

1. Assigning clear responsibilities to every member of the team and making clear what they
need to accomplish as a team.

2. Providing illustrations of activities portraying collaborative work and efforts.
3. Assigning a leader who can responsibly take control of the activities of a group.
4. Encouraging self-direction and motivation.
5. Keeping track of the progress of the team and identifying areas of conflicts or their short-

comings as a team.
6. Conducting group and self-evaluations based on the progress.
7. Designing a rubric to measure the process and product.

To be part of the working world in the future, students need to learn to collaborate as
a member of a team. Collaboration is one of the most significant skills required in a work envi-
ronment and every student needs to be prepared for that environment, partly for employment
opportunity, but mainly because learning and creating as an individual process is no longer
effective. Effective communication is one of the main factors that drives collaboration and leads
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to best expressions of innovation, creativity and critical inquiry. Once students get a little used
to with working in teams, take responsibility and begin to collaborate well, they get to learn
more, can assist and teach each other, develop powerful solutions and altogether enjoy the entire
process if working in a team. This can lead to remarkable results. Teachers need to be involved
with other teachers and mentors to learn about better teaching. They should come together,
take a professional development and collaborate. In order for students to be successful and be
able to demonstrate and apply these skills, teachers as adults in the learning system have to
be ongoing adult learners and model the same skills in the work that they do professionally
and in the classroom with the students. Being able to synthesize and transmit ideas in both
written and oral formats is essential in collaboration. For teachers, effective communication
and collaboration are the 21st century skills to be really emphasized on. Professional learning
communities (PLC) which are effective at breaking the isolation of the individual teacher and
help institute a collaborative community of practice should be formed. Focus on collaboration
will help all educators to pause and reflect about what they do with the valuable time they have
with students. There has been a lot of talk about knowledge economy and global competitive-
ness. The essence of these includes Creativity and Innovation, Critical Thinking and Problem
Solving, Communication and Collaboration. These skills help develop the qualities that the stu-
dents need to possess in the 21st century for success in college, careers and citizenship. Today’s
students are moving beyond the basics and embracing the super skills for the 21st century.
Acknowledgements: We would like to thank both of our families for their support and motivation
through this paper.
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Part 1. Math 21: Hybrid College Algebra I for Nursing Students

In the fall 2014, I was approached by my director asking if I would be interested in teaching a
hybrid College Algebra course, which I gladly accepted. The course is part of the accelerated
bachelor of nursing program at Penn State Behrend and I had to create a course with specific
applications for nursing students. When first faced with this new endeavor, I knew I needed help
from others. Reaching out to the various nursing instructors at Penn State Behrend, I gained a
wealth of information on how to incorporate nursing applications into the class. When it came
down to building the course online, I had help from my colleague, Jessica Resig, Director of
World Campus Learning Design and Behrend Center for eLearning Initiatives. Through our
collaborative efforts, the 7-week course was online and ready to go within a period of two
months.

Part 2. Pre-Reading to Understand the Nursing Profession

When finding out this would be a class for nursing students, I wanted to find out, specifically,
how mathematics is used in the medical profession. In the medical field, the administration of
medicines is a large part of a nurses job. With the 21st century, the times nurses are preforming
medical calculations have decreased, Hoiston (1996) estimated that at least one person dies
each day in the United States due to medication errors. When first reading this, I strived to
give my students all the mathematics they would need to be confident for their careers. In the
nursing textbooks I have looked at, most of them present problems with formulas and having
students substitute numbers without giving much thought about why they are calculating
medical dosages. There are two large problems with this procedure. First, in a study done by

Paper presented at the 3rd Strathmore International Mathematics Conference (SIMC 2015), 3 - 7 August 2015,

Strathmore University, Nairobi, Kenya.



Vol. 3 (2016) The Science Behind a Flipped Classroom 77

Hoyles, Noss, and Pozzi (2001) where twelve nurses were observed found the nurses mostly relay
on proportional reasoning strategies. Although the nurses can remember formulas taught in their
schooling years, they always returned to the methods of proportional reasoning to avoid any
complex division and multiplication. The second problem with using the substitution method
and formulas are outlined in the study by Blais and Bath (1992). Here, the conceptual errors
in medication administration were more frequent than mathematical errors and measurement
errors. The set-up of dosage calculations were of the more common type of error. Mistakes are
made at any profession and are not unique to nurses. According to sociologist E. C. Hughes
(1951), people working in all occupations make these errors and suffer a great deal of anxiety
as a result. Wolf (1994) recalls how terrible she had felt when, Oh, my God! I pulled out the
wrong one! The initial thought was to not tell anyone what happened, however, mistakes such
as these in the nursing field must be reported. It is a matter of life and death.

Part 3. Outline of Math 21

As the course was part of the accelerated bachelor program for nurses, the nursing department
wanted the course to be 7 weeks long. Typically, Math 21 is a traditional 15-week course that
meets for 50 minutes on Monday, Wednesday, and Fridays or Tuesday and Thursdays for 75
minutes. Teaching this course in a regular fall and spring semesters is hard enough to get
through material in a 15-week semester, let alone, a 7-week semester. I needed to think about
how to best split up the class to make sure all bluebook concepts were covered along with the
nursing applications. In terms of the required concepts, the course needs to cover concepts of
quadratic equations, equations in quadratic form, word problems, graphing, algebraic fractions,
negative and rational exponents, and radicals. The class would meet every Thursday for 2.5
hours, so time was critical to say the least. With the nursing applications I received from the
nursing department, I wanted to include topics on unit conversions, Bishops Score, Radon Gas
Risks, Growth Charts for Boys aged 2 20 years, Girls Growth Charts from birth to 36 months
old, Fahrenheit vs. Celsius, Incidence of Diabetes in Adults ages 45 64, Life Expectancy,
Training Heart Rate Zones, BMI, Calculating pH, Spread of Viruses, Cancer Cell Simulation,
and Eliminating Medicine from the Bloodstream. As we can see, I had a lot of good topics to
work with. Please see the appendix for the outline of Math 21.

During Week I, I showed students a PowerPoint on Scientific Notation, Linear Inequali-
ties, Compound Inequalities, Absolute Value Equations, and Absolute Value Inequalities. How-
ever, for all other weeks, students were required to view video lectures I had created under the
guidance of my colleague Dr. Jessica Resig.

Part 4. Course Development

By renting an iPad from the Behrend library, I created all videos using Doceri. When starting
this process, I soon found out this was going to be a time consuming process. What saved
me some time were PowerPoints I had created from previous times I had taught the course.
Taking out the solutions to each problem, saving and exporting the slides as jpegs via Dropbox,
I would have the problem typed up and I went through the solutions for my lectures. Some of
the lessons I learned about making video lectures were:

1. Timing consuming but once made, videos can be used over and over again.
2. Record videos in a place where no one will disrupt you.
3. I recorded my videos between 6 11 pm each day in my office. However, make sure all

phones are disconnected.
4. Dont create long videos. Studies show, students are more inclined to view 5 7 minute

videos instead of 15 20 minute videos.
5. Use software where you can edit mistakes.
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6. Have a script ready. This will minimize errors.

Math 21 was being offered in the spring 2015 semester. I started and completed making all
videos within a three-month period between October to December. In terms of homework and
assessments, I used MyMathLab (MML). I had used MML in the past at other Universities
before coming to Behrend and I knew how successful the software had been in previous courses.
Using the book by Martin-Gay, Intermediate Algebra 6th edition, Pearson had a Ready-To-
Go course available with the book. All assignments were premade with the option to edit. I
went through and edited each assignment by cutting out and adding questions. I also set the
requirement that all assignments have a passing rate of 80When it came down to face-to-face
class time, I started each class with a check-up activity to make sure students watched the
videos before coming to class. Since the students were in the accelerated nursing program,
they were ready to answer questions and actively participated in discussions. After the check-
ups, the applications were passed out and students worked in pairs. The class had a total of
seven students so there were a lot of interactions between fellow classmates and myself. This
environment of students working in their own zones of proximal development where ideas were
exchanged worked exceptually well for this class. If any work was not completed, students were
given the opportunity to turn in any work the following week. I also accepted work until the
end of the semester. My experience with teaching this course has been very eye opening and an
experience Im thankful I obtained in my teaching career. I will now share some best practices
I have learned that can take any traditional course to a flipped class. Of course, readers of this
paper may have other ideas on how to effectively flip a class.

Part 5. The Science to Flipping a Class

When first asked to teach a hybrid class, I needed to learn what makes a hybrid class a hybrid
class. According to Lorenzetti (2013), Instead of using class time to convey the basic information
you want your students to remember and asking them to work on more difficult learning tasks
alone, a flipped class asks students to come to class prepared with the foundational information
and then to work on the challenging tasks of analysis, evaluation, and creation with others.
When first starting to think about how to flip a class, which I had never previously done in my
career, I had to think back to how college works. While going through my college career, I had
to take my own initiative and learn things on my own. After a 50 minute class, I would spend
3-4 hours working out problems, re-working my notes, finding additional resources to make
them work to aid my learning. Then, in class, I would ask follow-up questions to further engage
myself to get the most out of my learning. What I have outlined above was my starting point to
creating my hybrid class. The learning was placed on the students so that when they came into
class, they were ready for the check-ups and to apply their knowledge to nursing applications.
If we think about it, we as faculty spend many hours helping our students in office hours and
answering emails. With a flipped class, the instructor can work with students directly as if they
are in a big office hour. This, of course, will vary on class size. As Hill (2013) points out, Faculty
can then devote time to helping students develop synthesis and explore application during class
time through: experiential exercises, team projects, problem sets, and activities that previously
have been assigned as independent homework. In particular, students can receive direct faculty
input on those segments of the material that have historically been the most [difficult] or
ambiguous. When teaching my flipped class, I found that topics such as factoring trinomials
were easier for students to understand, especially when factoring trinomials where the leading
coefficient was not one. With using colors on the video and having the check-up for this concept
alone, I saw a great improvement in students being able to know what do to and to solve the
problem faster than in a face-to-face class. However, as with teaching any class, the students
must be driven to work. As Ullman (2013) points out, It requires students to be independent.
Its an excellent growth opportunity, but the student has to be willing to put in the time and be
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an active participant in the learning. Some [students] listen, do a little homework, and get by.
That wont cut it in the flipped classroom. In a flipped classroom, it is imperative to convey to
your students that the course is NOT a traditional face-to-face class. Caldarera (2013) writes,
The flipped classroom format, [students] will be expected to complete the lesson as homework.
All instructions are to be followed so as to allow more time for engaging enrichment activities
in class. One important piece of advice I would like to share is to send out a welcoming email to
the students before class begins. The email I sent out was the following: Dear Nurses, I would
like to welcome you to Math 021: College Algebra I taught via the hybrid learning platform. My
name is Professor Peter Olszewski and I will be your instructor for this class. I hope everyone
is excited to start as I am. I wanted to send out a welcoming announcement about what we
will be covering in the next seven weeks and my tips for success. Math 021 covers the following
topics

1. Graphs, functions, and solving absolute value equations.
2. Polynomials and Factoring.
3. Rational Expressions, Equations, and Functions.
4. Radicals.
5. Quadratic Equations and Functions.
6. Sequences, Series, and the Binomial Theorem.

In terms of nursing applications, we will cover...

1. Unit conversions.
2. Bishop’s score.
3. Radon gas risks.
4. Growth charts for boys 2 - 20 years & girls birth - 36 months.
5. Diabetes in adults ages 45 - 64.
6. Life expectancy.
7. Protein intake.
8. Heart rates.
9. BMI.

10. Spread of viruses.
11. Cancer cell growth.
12. Eliminating medicine from the bloodstream.

We will be using MyMathLab (MML) software for all homework assignments, quizzes, and
exams. The start of each week will be on Thursdays and end the following Wednesday. My tips
for success for this course and beyond are to....

1. RRR and SSS, which stands for Read, Read, Read, and Solve, Solve, Solve. The more
you read, the examples, definitions, methods and the more you practice with solving the
problems, the better you’ll be! Practice makes perfect.

2. Be sure to take the time to read the information in the weekly assignments carefully.
Everything you need to know is included in these areas.

3. Ask for help whether it is in the Problems and Solutions thread, weekly discussion threads,
calling, or emailing me for help. Chances are, if you are stuck on a question, your fellow
peers might also be stuck on the same question. Don’t be afraid to ask!

4. Actively participate in ALL discussions. The more you chat about what you are thinking
about to solve a problem, the better you’ll understand it through comments from either
myself or from fellow classmates.

5. Take your time when doing the exams. There are no extra bonus points awarded for blazing
through exams in 15 minutes by getting half the answers wrong.

6. Check your work. If you get an answer to a problem, do it again to see if you get the same
answer. If the problem requires you to solve an equation to get the value of a variable,
substitute the value back into the equation to see if the equation still holds.

Imhotep Proc.



80 Peter T. Olszewski

7. Get a calculator. If you don’t already have one, a TI-83 or TI-84 would be good to have
for future mathematics courses since they can graph functions. I know these calculators
are pricy but they will be worth it in the long run. However, a simple calculator will work.
I recommend the TI-30.

8. Buy some graph paper, a ruler, and pencils. These will help you with the graphing prob-
lems.

9. If you get frustrated on a problem, write out all the steps you took to solve the problem
and either call or email me. By showing your work, I can quickly go through and see where
you went astray.

It is great having all of you in class this semester. I hope you are looking forward to the course
as much as I am!
Sincerely,
Professor Olszewski

In teaching this course, I have found that having this email and talking to students
on day one about the course proved to be very helpful. Of course, the students I had for this
course had taken other hybrid classes in the past and knew they needed to work hard. If you
have a class of students who have never had a hybrid class they may be overwhelmed and even
walkout on the first day. I have found that the student, who is driven to learn on their own, is
willing to discover, and wants to be the best they can be, will thrive in a hybrid class. With
my experience, I offer the following best practices to flipping your own class with the emphasis
not all these ideas may work for every class and instructor:

1. Make the class personal. Often times, the only time your students will see you lecturing
is through video lecturers. Try to make the videos, as you would want to be seen if you
were being recorded for a giving a talk at a conference. Keep it professional but fun.

2. Make it engaging. When students are looking at your videos, if they find them boring,
they will be more likely to resort to other videos to obtain information.

3. Make it short and segmented. As stated earlier, videos should not be long, as students
will become disengaged after 10 minutes. This is true of video lecturers and face-to-face
lecturers.

4. Make it relevant. As in a face-to-face class, the key to a successful flipped classroom is to
relate problems to real-life applications. In Math 21, I had no problem creating applications
for nursing students.

5. Make it a two-way street. Although I didnt try this, what Im thinking about for the next
time I teach the class is to have students make their own videos or to come up with exam
problems or critique other students work. This way, students have more control over their
own learning.

6. Have an introductory video about a flipped classroom. I also didnt try this but to create
a video where a flipped class is explained may help students understand how the class will
run before the first day of the semester.

7. Take attendance. I didnt have a problem with attendance in my class but I can see it
being a big problem for other classes. With a flipped class, the student must be present. I
see a student missing a flipped class as being the same as missing a physics lab, which is
very hard to make up. Also, give a grade reduction for students who do miss class.

8. Unprepared students. Students who dont watch videos or read the text before coming
to class can cause a huge disruption. Here, make a seating chart and keep track of the
students who are not prepared for the week. Offer one chance to redeem themselves and
ask students questions the next class period instead.

9. Dont assign too much homework. Before starting the class, think about which problems
test the concepts more than others. Remember, students are doing twice as much work
outside of class while in a flipped class. You want to have clear goal on what you want
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students to be able to do at the end of the semester. In short, developing learning goals is
vital.

10. Access to materials online. Although it is 2015, some students still dont have regular access
to computers. At the start of the semester, stress to students that they must have access
to a computer either through family/friends or at public libraries or at school. Not having
computer access is simply a no-go for a flipped class.

11. Lots of prep work for the instructor. When first faced with creating a hybrid class, you as
the instructor need to devote a lot of time to preparing the class. The ideal time to prepare
for a flipped class would be over the summer as the three months or so will give plenty of
time to get videos, activities, announcements, syllabus, assessments, and homework ready
to go.

12. Monitor students work online. With MML, it is very easy to see who is doing the work
and who isnt. Stress to students deadlines and have a clear policy in place about late work.
Also, talk to your IT specialists to see how you can monitor who watches video lecturers
to make sure they are being watched.

13. Large classes. Although I have not had a personal experience in teaching a class larger than
50 students, I dont see how a flipped class of say, 300 students, would work. Sometimes,
a class shouldnt be flipped.

14. Allow feedback. When teaching the course for the first time, I gave three feedback forms
to my students to complete on ANGEL. The more feedback I received, the better the class
went.

15. Talk to fellow colleagues about their experiences. Often times, the person next door to
your office can provide you with a great wealth of experience. Dont be afraid to ask for
advice.

16. You are still the professor. Even though the learning of the concepts happens outside the
classroom, you are still the professor guiding students along and offering your wealth of
knowledge in the face-to-face time with the students. Dont be discouraged about the new
way of running your hybrid class vs. your traditional class, embrace it!

17. If things go wrong. Not everything will go right. Learn from your mistakes and try again.

Part 6. Conclusion

In conclusion, I can honestly say I have learned a great deal about myself through teaching
my first hybrid class. When I made my first video and I heard it play back, I deleted it right
away, as I couldnt believe how boring I sounded. It made me realize how I needed to change
to get the students involved outside of class. The energy and enthusiasm I always have in a
face-to-face class needed to be transferred in a new arena where students could think without
my physical presence. I would highly encourage anyone who is thinking of trying the flipped
classroom approach to not waste time thinking about, but to do it. It will make you stop and
think about how to deliver your teaching in a new light.
Acknowledgements: I would like to thank my collaborator, Jessica Resig for helping me put
the hybrid course together using ANGEL and for always giving me support throughout this
exciting process.
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Appendix A: Outline of Math 21 
 

Week Topics Group Application 
Problems 

Thursday, January 15, 2015 
Week I 

1. Set-up MML accounts. 
2. Scientific Notation. 
3. Linear Inequalities. 
4. Compound Inequalities. 
5. Absolute Value Equations. 
6. Absolute Value Inequalities. 

1. Unit Conversion Lab. 
2. Bishop’s Score. 
3. Radon Gas Risks. 
4. Growth Charts, Boys 2 -
20 years & Girls birth – 36 
months. 
5. Metric Mania. 
6. Dosage Calculation 
Worksheet 

Thursday, January 22, 2015 
Week II 

1. MML Homework, § 2.4 – 2.7 Due. 
2. Post-Test on Chapter 2 Due. 
3. Graphing Equations. 
4. Introduction to Functions. 
5. Graphing Linear Functions. 
6. The Slope of a Line. 
7. Equations of Lines. 
8. Graphing Piece-wise-Defined 
Functions, Shifting, & Reflecting Graphs 
of Functions. 
9. Graphing Linear Inequalities. 

1. Fahrenheit vs. Celsius. 
2. Incidence of Diabetes in 
Adults Ages 45 – 64. 
3. Life Expectancy parts I-
II. 
4. Protein Intake. 
5. Training Heart Rate 
Zones. 
6. Graph of Heart Rate over 
Time. 

Thursday, January 29, 2015 
Week III 

1. MML Homework, § 3.1 – 3.7 Due. 
2. Post-Test on Chapter 3 Due. 
3. Exponents & more on Scientific 
Notation. 
4. Polynomials and Polynomial 
Functions. 
5. Multiplying Polynomials. 
6. The Greatest Common Factor and 
Factoring by Grouping. 
7. Factoring Trinomials. 
8. Factoring by Special Products. 
9. Solving Equations by Factoring and 
Problem Solving. 

Class will be working on 
MML homework, 
applications within MML. 

Thursday, February 5, 2015 
Week IV 

1. MML Homework, § 5.1 – 5.8 Due. 
2. Post-Test on Chapter 5 Due. 
3. Rational Functions, Multiplying, & 
Dividing Rational Expressions. 
4. Adding & Subtracting Rational 
Expressions. 
5. Simplifying Complex Fractions. 
6. Solving Equations Containing 
Rational Expressions. 
7. Rational Equations & Problem 
Solving. 
8. Variation & Problem Solving. 
9. Radicals and Radical Functions. 
10. Rational Exponents. 
11. Simplifying Radical Expressions. 
12. Adding, Subtracting, & Multiplying 
Radical Expressions. 
13. Rationalizing Denominators & 

1. Textbook applications. 
2. Variation applications 
(non-nursing examples). 



Numerators of Radical Expressions. 
14. Radical Equations & Problem 
Solving. 

Thursday, February 12, 2015 
Week V 

1. MML Homework, § 6.1 – 6.3, 6.5 – 
6.7, & 7.1 – 7.6 Due. 
2. Post-Test on Chapters 6 & 7 Due. 
3. Solving Quadratic Equations by 
Completing the Square. 
4. Solving Quadratic Equations by the 
Quadratic Formula. 
5. Solving Equations by Using Quadratic 
Methods. 
6. Quadratic Functions & Their Graphs. 
7. Further Graphing of Quadratic 
Functions. 

1. Additional Life 
Expectancy. 
2. Heart Rate Data. 
3. More on Heart Rate. 
4. More on BMI. 
5. Applications to 
Quadratics (non-Nursing 
examples). 

Thursday, February 19, 2015 
Week VI 

1. MML Homework, § 8.1 – 8.3 & 8.5 – 
8.6 Due. 
2. Post-Test on Chapter 8 Due. 
3. Exponential Functions. 
4. Exponential Growth & Decay. 
5. Logarithmic Functions. 
6. Properties of Logarithms. 
7. Common Logarithms, Natural 
Logarithms, & Change of Base Formula. 
8. Exponential & Logarithmic Equations 
& Problem Solving. 

1. Calculating pH. 
2. Spread of a Virus. 
3. Compound Interest 
applications (non-nursing 
examples). 
4. Scientific Applications 
with continuous compound 
formula. 
5. Cancer Cell Simulation. 

Thursday, February 26, 2015 
Week VII 

1. MML Homework, § 9.3 – 9.8 Due. 
2. Post-Test on Chapter 9 Due. 
3. Sequences. 
4. Series. 
5. The Binomial Theorem. 
6. Review for Final Exam. 
7. Post-Test on Chapter 11 Due on 3/1 
at 11:59 pm. 

1. Eliminating Medicine 
from the Bloodstream. 
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1. Introduction

In this section, we summarize some well known results on the zero divisor graphs of commutative
rings.The definition of terms and standard notations can be obtained from [1, 4, 8]. The concept
of a zero divisor graph was proposed by Ivstan Beck in [3]. According to him, G(R) = R such
that the distinct vertices u and v are adjacent iff uv = 0. Since the zero element is adjacent
to every other vertex, the graph is connected with diam(G(R)) ≤ 2. He conjectured that the
chromatic number coincides with the clique number of G(R). Later, D.D. Anderson and M.
Naseer in [1] provided an example where the clique number is strictly less than the chromatic
number. D.F. Anderson and P.S. Livingston [2] simplified Beck’s graph. They considered the
non zero zero divisors as the vertices of the graph Γ(R) and the adjacency concept is similar to
Beck’s. Amongst their major findings, the graph of commutative ring R is connected with diam
(Γ(R)) ≤ 3. S.B. Mulay in [6]introduced the zero divisor graph ΓE(R) of equivalent vertices.
The graph ΓE(R) is connected with diam(ΓE(R)) ≤ 3. This graph can be finite even if R is
infinite, thus it is less ”noisy” than its predecessors. S.P. Redmond in [7], originated a zero
divisor graph with respect to an ideal I. The distinct vertices u and v are adjacent with uv ∈ I.
In this paper, some graph theoretical properties of Galois rings have been determined.

2. Zero divisor graphs of Galois rings

A ring R is said to be Galois, if its subset of all the zero divisors (including zero) forms a
principal ideal. It is an extension of the ring of integers modulo pk (where p is a prime integer
and k is a positive integer). The extension is usually represented by Zpk [x]/ < f(x) > where
f(x) ∈ Zpk [x] is a monic polynomial of degree r and irreducible over Zp. It is denoted by

GR(pkr, pk). A Galois ring can be trivial depending on whether k or r equals to 1, otherwise it
is nontrivial.
Let Ro be a Galois ring and Z(Ro) be its subset of zero divisors (including zero). Then Z(Ro)

Paper presented at the 3rd Strathmore International Mathematics Conference (SIMC 2015), 3 - 7 August 2015,

Strathmore University, Nairobi, Kenya.
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is a unique maximal ideal of Ro and is therefore the Jacobson radical of Ro. A graph Γ(Ro) is
associated to Ro with vertices Z(Ro)

∗ = Z(Ro) \ {0}, the set of nonzero zero divisors of Ro.
The graph theoretical properties are used to illuminate the structure of Z(Ro). Two distinct
vertices u1, u2 ∈ Z(Ro)

∗ are adjacent if u1u2 = 0 and equivalent if AnnRo(u1)=AnnRo(u2).
The graph of equivalent vertices in Ro, ΓE(Ro) is simple with vertex set Z(Ro)

∗/ ∼ such that
[u1], [u2] ∈ Z(Ro)

∗/ ∼, adjacent provided u1u2 = 0.
Let u ∈ Z(Ro)

∗ and s 6= 1 be a unit in Ro. In Γ(Ro), the vertices u and su are distinct and

[u] = [su] in ΓE(Ro). So ΓE(R
′
) is less noisy than Γ(R), (see[5]).

In this paper, we investigate the connectedness of Γ(Ro), ΓE(Ro) and determine the diameter,
girth and binding number of Γ(Ro) and ΓE(Ro).

Theorem 2.1. (See e.g [2]) Let R be a commutative ring (not necessarily Galois). Then Γ(R) is
finite iff R is finite or an integral domain.

Remark 2.2. From the above theorem, we notice that Γ(Ro) is finite because Ro is finite.

Remark 2.3. If Ro = GR(pr, p), then Z(Ro)
∗ is empty. It will therefore be of interest to char-

acterize the zero divisor graphs of Ro = GR(pkr, pk), where k > 1, r ≥ 1

Remark 2.4. If p is prime, then Γ(GR(p2, p2)) is a complete graph on p − 1 vertices and
ΓE(GR(p2, p2)) is a single vertex. But Γ(GR(p3, p3)) is messy while ΓE(GR(p3, p3)) is a single
edge. Moreover, Γ(GR(p4, p4)) is even messier while ΓE(GR(p4, p4)) is a star graph.

Proposition 2.5. Let Ro = GR(pk, pk). Suppose α is a unit in Ro and | Γ(Ro) |= plα, then the
degree of plα,

deg(plα) =

 pl − 1 if 2l < k

pl − 2 if 2l ≥ k

Proof. Given that α is a unit in Ro, then (α, pk) = 1. So, all the vertices adjacent to
plα in the set pGR(pk, pk) of the graph Γ(Ro) are the same vertices adjacent to pl. Now, to
find the degree of plα, it suffices to find all the vertices adjacent to pl. Let n be the number of
vertices adjacent to pl in Γ(Ro). The first term in this sequence of vertices is pk−l and the nth
term is pk−l + (n − 1)pk−l. Since the last term in the sequence is pk − pk−l, it easily follows
that pk−l + (n− 1)pk−l = pk − pk−l leading to n = pl − 1 if pk−l > pl or k > 2l. If pk−l ≤ pl or
k ≤ 2l, then p2l−k(pk−l) = pl is adjacent to itself, so that deg(pl) = pl − 2.

�

Proposition 2.6. Given that Ro = GR(pkr, pk) and α is a unit in Ro, then the degree of plrα,

deg(plrα) =

 plr − 1 if 2l < k

plr − 2 if 2l ≥ k

Proposition 2.7. Let Ro = GR(pk, pk), k ≥ 3. Then,

Γ(Ro) =


(p

k
2 − 1)− partite if k is even

p
k−1
2 − partite if k is odd

Proof. Obviously Z(Ro)
∗ = Z(Ro)− {0} = pRo − {0}.

Case (i): k is an even integer. We partition Z(Ro)
∗ into the following subsets:

V1 = Z(Ro)
∗ − {j(p k2 ), 2 ≤ j ≤ p k2 − 1};

Vj = {j(p k2 )}, 2 ≤ j ≤ p k2 − 1.
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For 1 ≤ i ≤ p k2 − 1, Vi 6= ∅, V1 does not contain adjacent vertices, each Vj is singleton,

V1 ∩ Vj = ∅, 2 ≤ j ≤ p k2 − 1;

Vj ∩ Vl = ∅, j 6= l, 2 ≤ j, l ≤ p k2 − 1.

Finally

Z(Ro)
∗ = V1 ∪ (∪p

k
2 −1

j=2 Vj) = ∪p
k
2 −1

i=1 Vi.

Thus Γ(Ro) is p
k
2 − 1 partite.

Case (ii): k is an odd integer. We partition Z(Ro)
∗ into the following subsets:

V1 = Z(Ro)
∗ − {(j − 1)(p

k+1
2 ), 2 ≤ j ≤ p

k−1
2 };

Vj = {(j − 1)(p
k+1
2 )}, 2 ≤ j ≤ p

k−1
2

. For 1 ≤ i ≤ p k−1
2 , Vi 6= ∅, V1 does not contain adjacent vertices, each Vj is singleton,

V1 ∩ Vj = φ, 2 ≤ j ≤ p
k−1
2 ;

Vj ∩ Vl = ∅, j 6= l, 2 ≤ j, l ≤ p
k−1
2 .

Finally

Z(Ro)
∗ = V1 ∪ (∪p

k−1
2

j=2 Vj) = ∪p
k−1
2

i=1 Vi.

Thus Γ(Ro) is p
k−1
2 partite

�

Example 1.
Let Ro = GR(8, 8). Then Z(Ro)

∗ = {2, 4, 6}. V1 = {2, 6}, V2 = {4}. So Γ(Ro) is
bipartite.
Example 2
Let Ro = GR(81, 81). Then Z(Ro)

∗ = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30,
36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78}. V1 = {3, 6, 9, 12, 15, 21, 24, 30,
33, 39, 42, 48, 51, 57, 60, 66, 69, 75, 78}, V2 = {18}, V3 = {27}, V4 = {36}, V5 = {45}, V6 = {54},
V7 = {63}, V8 = {72}. So Γ(Ro) is octapartite.

Proposition 2.8. Suppose Ro = GR(pk, pk), k ≥ 4. Then
i)The diameter, diam(Γ(Ro)) = 2
ii) The girth, gr(Γ(Ro)) = 3
iii)The binding number,

b(Γ(Ro)) =


p
k
2 −2

pk−1−p
k
2 +1

if k is even

p
k−1
2 −1

pk−1−p
k−1
2

if k is odd

Proof. (i) and (ii) are clear. To prove (iii), we consider the two cases separately.
If k is even, we consider

V1 = Z(Ro)
∗ − {j(p k2 ), 2 ≤ j ≤ p k2 − 1}

and
N(V1) = {j(p k2 ), 2 ≤ j ≤ p k2 − 1}.

Notice that
| V1 |= pk−1 − p k2 + 1

and
| N(V1) |= p

k
2 − 2
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, so that

b(Γ(Ro)) =
| N(V1) |
| V1 |

=
pk/2 − 2

pk−1 − p k2 + 1
.

If k is odd, we consider

V1 = Z(RO)∗ − {(j − 1)(p
k+1
2 ), 2 ≤ j ≤ p

k−1
2 }

and

N(V1) = {(j − 1)(p
k+1
2 ), 2 ≤ j ≤ p

k−1
2 }.

Notice that

| V1 |= pk−1 − p
k−1
2

and

| N(V1) |= p
k−1
2 −1

, so that

b(Γ(Ro)) =
| N(V1) |
| V1 |

=
p
k−1
2 − 1

pk−1 − p k−1
2

.

�

Remark 2.9. Easy computations yield limk→∞b(Γ(Ro)) = 0. This implies that as k increases
(whether odd or even), more vertices become non adjacent.

Lemma 2.10. Let Ro = GR(pr, p), then Z(Ro)
∗ = ∅

Proof. Easy

�

Proposition 2.11. Let Ro = GR(p2r, p2). Then Γ(Ro) = Kpr−1 and ΓE(Ro) is a single vertex.

Proof.Since ((Z(Ro))
2 = 0, each zero divisor is adjacent to the other. But

| Z(Ro)
∗ |= pr − 1

, so that Γ(Ro) is complete on pr − 1 vertices. That ΓE(Ro) is a single vertex follows from the
fact that Ann(Z(Ro)) = Z(Ro)

�

Remark 2.12. Let Ro = GR(p3r, p3). Then Γ(Ro) is noisy while ΓE(Ro) is a single edge.

Proposition 2.13. Given that Ro = GR(pkr, pk), k ≥ 4. Then the clique number,

ω(ΓE(Ro)) =


k
2 if k is even

k+1
2 if k is odd

Proof. It suffices to find a maximal complete subgraph of ΓE(Ro). Let s be a unit in Ro.

Case I: k is even.
We show that ΓE(Ro) has a maximal complete subgraph S with vertices

{[pιs] = [pι],
k

2
≤ ι ≤ k − 1}.

Suppose on the contrary that S is not maximal in ΓE(Ro) and that there exists a maximal
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complete subgraph S
′ ⊂ ΓE(Ro) so that S ⊂ S

′
. Without loss of generality, assume that

pi ∈ S′ where  0 < i < k
2 , k is even

0 < i < k−1
2 , k is odd

then there exists some j > i > 0 so that

pi.pk−1−j = pk−1+i−j

6= 0.

So S
′

is not complete, a contradiction.

Case II: k is odd.
Using similar steps as Case I above, we can show that ΓE(Ro) contains a maximal complete
subgraph with vertices

{[pιs] = [pι],
k − 1

2
≤ ι ≤ k − 1}.

�

Proposition 2.14. Let Ro = GR(pkr, pk), k ≥ 4. Then
i) the diameter,diam (ΓE(Ro)) = 2
ii) the girth, gr(ΓE(Ro)) = 3
iii)the binding number,

b(ΓE(Ro)) =


k−4
k if k is even

k−5
k−1 if k is odd

Proof. (i) and (ii) are easy. To prove (iii), we consider the two cases separately. When k is even,
then from Proposition 2 ,

| V1 |=
k

2
while

| N(V1) |= k − 4

2
,

so that

b(Γ(Ro)) =
k − 4

k
.

Next, when k is odd,

| V1 |=
k − 1

2
while

| N(V1) |= k − 5

2
.

The result then easily follows.

�

Corollary 2.15. Suppose Ro = GR(pkr, pk) where k ≥ 4. Then

ΓE(Ro) =


k
2 partite if k is even

k+1
2 partite if k is odd
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Proof. Case I: k is even.
ΓE(Ro) is partitioned into the following subsets.

V1 = {(Z(Ro))
ι : 1 ≤ ι ≤ k

2
}

Vi = {(Z(Ro))
i}, k

2
< i ≤ k − 1.

For each i, V1 ∩ Vi = ∅ and the Vi are mutually disjoint. Moreover,

V1 ∪ (∪k−1i=k/2Vi = ΓE(Ro)

. The result then follows by counting the disjoint subsets of ΓE(Ro).

Case II: k is odd.
In this case, ΓE(Ro) is partitioned into the following subsets.

V1 = {(Z(Ro))
ι : 1 ≤ ι ≤ k − 1

2
}

Vi = {(Z(Ro))
i}, k − 1

2
< i ≤ k − 1.

The rest of the proof involves steps similar to Case I with some slight modifications.

�

Proposition 2.16. Let Ro = GR(pkr, pk), k ≥ 3. Then
i) the diameter,diam (Γ(Ro)) = 2
ii) the girth, gr(Γ(Ro)) = 3
iii) the binding number,

b(Γ(Ro)) =


p(
k
2
)r−2

p(k−1)r−p(
k
2
)r+1

if k is even

p(
k−1
2

)r−1
p(k−1)r−p(

k−1
2

)r
if k is odd

Proof. (i) and (ii) are elementary. To prove (iii), begin with the case when k is even. Let
ε1, ..., εr ∈ Ro with ε1 = 1 such that

ε1, ..., εr ∈ Ro/pRo
form a basis for Ro/pRo regarded as a vector space over its prime subfield Fp. By the definition
of V1 in the previous Proposition,

N(V1) = V∑ aiεi .

So
| N(V1) |= p(

k
2 )r − 2.

Also

| V1 | =| Z(Ro)
∗ |

=| V∑ aiεi |

= p(k−1)r − 1− (p(k−1)r − 2)

= p(k−1)r − p k2 r + 1.

Let k be odd. Then

| N(V1) | =| V∑ aiεi |

= p
k−1
2 r − 1.
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Also

| V1 | =| Z(Ro)
∗ −X |

=| Z(Ro)
∗ | − | X |

= p(k−1)r − 1− (p(
k−1
2 )r − 1)

= p(k−1)r − p(
k−1
2 )r

�

Proposition 2.17. Let Ro = GR(pkr, pk),where k ≥ 3 and r ∈ Z+. Then

Γ(Ro) =


p(

k
2 )r − 1 partite if k is even

p(
k−1
2 )r partite if k is odd

Proof. Clearly

Z(Ro)
∗ = Z(Ro) \ {0} = pRo \ {0}.

Let ε1, ..., εr ∈ Ro with ε1 = 1 such that

ε1, ..., εr ∈ Ro/pRo

form a basis for Ro/pRo regarded as a vector space over its prime subfield Fp. We consider the
two cases separately.

Case I:k is an even integer.
We partition Z(Ro)

∗ into the following subsets.

X = {aiεi, 1 ≤ i ≤ r, ai ∈ {0, j(p
k
2 )}, 1 ≤ j ≤ p k2 − 1}

V∑ aiεi = X \ {0, p k2 }

V1 = Z(Ro)
∗ \ V∑ aiεi}

For each i = 1, ..., r, V∑ aiεi 6= ∅. Each of the V∑ aiεi 6= ∅ contains no adjacent vertices,
V1 ∩ V∑ aiεi = ∅. The sets V∑ aiεi are mutually disjoint. Moreover Z(Ro)

∗ = V1 ∪ (∪rV∑ aiεi).

Thus Γ(Ro) is p(
k
2 )r partite.

Case II:k is an odd integer.
We partition Z(Ro)

∗ into the following subsets.

X = {aiεi, 1 ≤ i ≤ r, ai ∈ {0, (j − 1)(p
k+1
2 )}, 1 ≤ j ≤ p

k−1
2 }

V∑ aiεi = X \ {0}

V1 = Z(Ro)
∗ \X.

The rest of the proof is similar to the previous case with slight modifications.

�
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3. Automorphisms of zero divisor graphs of Galois rings

Consider the integer k ≥ 2 and a positive integer r. Distinct ring automorphisms of GR(pkr, pk)
induce distinct graph automorphisms of Γ(GR(pkr, pk)), because GR(pkr, pk) is a finite ring
which is not a field, (see [2]). A graph automorphism, f of a graph Γ(Ro) is a bijection f : Γ→ Γ
which preserves adjacency. The set Aut(Γ) of all graph automorphisms of Γ forms a group under
the usual composition of functions, (see [2]). If | Γ |= pk, then in the obvious way, Aut(Γ) is
isomorphic to a subgroup of Spk and clearly Aut(Kpk) ∼= Spk . Infact, for a graph Γ of order pk,
Aut(Γ) ∼= Spk iff Γ = Kpk . Now, by restricting each f ∈Aut(Ro) to Z(Ro)

∗ we obtain a natural
group homomorphism φ :Aut(Ro)→Aut(Γ(Ro)).

Theorem 3.1. (See [2]) Let Ro = GR(pkr, pk) and let f ∈ Aut(Ro). If f(x) = x, ∀x ∈ Z(Ro),
then f = 1Ro . Thus, φ :Aut(Ro)→Aut(Γ(Ro)) is a monomorphism.

Now, consider Ro = GR(pk, pk). For pk ≥ 4, k 6= 1, let

X = {j ∈ Z | 1 < j < pk, j | pk}.
For each, j ∈ X, let

Vj = {l ∈ Z | 1 < l < pk, (l, pk) = j}.
Note that

Z(GR(pk, pk))∗

is the disjoint union of Vjs. Notice that two vertices have the same degrees iff they are in the
same Vd (See [2]).

Proposition 3.2. Consider the integer k ≥ 2. Then

| Aut(Γ(pkr, pk)) |=


∏k
l=2(2(k−l)r)! if p = 2∏k
l=2(p(k−l)r(pr − 1))! if p 6= 2

Proof. Case I: r = 1.
Let p = 2. Set X = {2, 4, ..., 2k−1}. Then V2 = {2t | t is odd}, V4 = {4t | t is odd},...,V2k−1 =
{2k−1t | t is odd}. Upon counting, | V2 |= 2k−2, | V4 |= 2k−3 and continuing in a similar

manner, | V2k−2 |= 2, and | V2k−1 |= 1. So Aut(Γ(GR(2k, 2k))) ∼=
∏k
l=2 S2k−l and the result

easily follows.
Let p 6= 2. Set X = {p, p2, ..., pk−1}. Then Vp = {pt | (t, p) = 1}, Vp2 = {p2t | (t, p2) =

1},...,Vpk−1 = {pk−1t | (t, pk−1) = 1}. Upon counting, | Vp |= pk−2(p− 1), | Vp2 |= pk−3(p− 1)

and continuing in a similar manner, | Vpk−1 |= p− 1. So Aut(Γ(GR(pk, pk))) ∼=
∏k
l=2 Spk−l(p−1)

and the result follows immediately.
Case II: r > 1.
Let ε1, ..., εr ∈ Ro with ε1 = 1 such that ε1, ..., εr ∈ Ro/Z(Ro) form a basis for Ro/Z(Ro)
regarded as a vector space over its prime subfield GF (p). For p = 2, let X = {2, 4, ..., 2k−1}
and V∑

aiεi
where ai ∈ X be the disjoint vertices, then clearly Aut(Γ(GR(2kr, 2k))) = S2(k−l)r .

The steps are similar for the case when p is odd.

�

4. A class of finite rings

Let Ro be the Galois ring of the form GR(pkr, pk). For each i = 1, ..., h, let ui ∈ Z(Ro) such that
U is an h dimensional Ro− module generated by u1, ..., uh so that R = Ro ⊕ U is an additive
group. On this group, define multiplication by the following relations:

: (i)If k = 1, 2 then pui = uiuj = ujui = 0, uiro = roui.
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: (ii)If k > 3 then pk−1ui = 0, uiuj = p2γij , ui
k = ui

k−1uj = uiuj
k−1 = 0, uiro = roui.

where ro, γij ∈ Ro, 1 ≤ i, j ≤ h, p is a prime integer, n and r are positive integers.
Moreover if ui|U , then the additive order of ui is p.

It can be shown that the multiplication turns the additive group into a commutative ring with
identity. The structure of the Von Neumann regular elements of the ring is well known. We
present some results on the structure its zero divisors.

Proposition 4.1. Let R be a ring constructed in this section. If Z(R) = pRo⊕U ; ann(Z(Ro)) =
pn−1Ro ⊕ U ; Jn−1 = pn−1Ro.
If
i) x ∈ ann(J) then deg(x) =| J | −2
ii)y ∈ Z(R) but y ∈ R− ann(Z(R)), then deg(y) =| ann(Z(R)) | −1

Proposition 4.2. Let R be a ring constructed in this section. Then
i)

Γ(R) =


p(

k
2+h)r − 1 partite if k is even

p(
k−1+2h

2 )r partite if k is odd

ii)diam(Γ(R)) = 2
iii) gr(Γ(R)) = 3
iv)

b(Γ(R)) =


p(
k
2
+h)r−2

p(k−1+h)r−p(
k
2
+h)r

if k is even

p(
k−1
2

+h)r−1
p(k−1+h)r−p(

k−1
2

+h)r
if k is odd

5. Conclusion

This study reveals, that it is possible to generalize the graph theoretical properties of Galois
rings. The zero divisor graphs of Galois rings are symmetrical as confirmed from their auto-
morphisms. It would be interesting to investigate, whether these properties extend to the zero
divisor graphs of the idealizations of the Galois rings.
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Abstract. Biodiesel is one of promising renewable energy source and used as an alternative
of conventional hydrocarbon fuels. Jatropha curcas plant oil (JCPO) is the most cost effec-
tive sources of biodiesel. The plant can be cultivated in wastelands and grows on almost
any type of territory, even on sandy and saline soils. Judicious agricultural practices and
effective crop management of Jatropha curcas is preliminary requisite to get maximum yield
of oil. Production of biodiesel by transesterification of Jatropha oil significantly depends on
four reaction parameters viz., reaction time, temperature, oil to alcohol molar ratio and
stirrer speed. In this work, we have formulated a mathematical model of Jatropha curcas
plant, which is affected by many type of pest with the aim to control the pest through
Nuclear Polyhedrosis Virus (NPV). Here we have also concentrated on insecticide spraying
as controlling measure to reduce the pest, to get maximum yield of Jatropha seeds, which
gives Jatropha oil. We have also shown the effect of different variants on mass transfer in
biodiesel production from JC oil and how the control theoretic approach flags the maximum
production of biodiesel under the mathematical paradigm. Our analytical results provide
an idea of the cost effective faster rate of biodiesel production, which satisfies our numerical
conclusions.

Mathematics Subject Classification (2010). 34A08, 34K37, 37N25, 49J15.

Keywords. Jatropha curcas oil, Transesterification, Biodiesel, Reaction parameter, Mathe-
matical modelling, Optimal control.

1. Introduction

In today’s world, petroleum is clearly the most important energy source, providing more than
half of the world’s power, as well as being a basic material used in the manufacture of fertil-
izer, synthetic fibers, plastics and synthetic rubber. Demand is ever increasing worldwide, yet
petroleum resources are finite and non-renewable. Concerns about diminishing supplies, rising
cost and environmental problems of hydrocarbon fuels have been motivating researchers glob-
ally to seek more extensively alternative, renewable energy sources to harness future energy de-
mands. Jatropha oil is environmentally safe, cost effective renewable source of non-conventional
energy and a promising substitute for diesel. Biodiesel can be derived from Jatropha oil and it is
clean-burning, biodegradable, natural and it can help in reducing mineral oil dependence also.
It is one of the promising and profitable agro forestry crop grown for its bio-diesel production
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[1, 2]. The cultivation of Jatropha plant has been considered as one of the most promising solu-
tions to the problems created by climate change and energy insecurity in developing countries
for several years. Also, Jatropha is a multipurpose shrub of significant economic importance
because of its several potential industrial and medicinal uses. Jatropha is depicted as miracle
tree that could simultaneously produce biodiesel, reclaim waste land and enhance rural devel-
opment without compromising food production or ecosystem services [3, 4, 5].

Jatropha curcas seed oil is proven to be toxic to many microorganisms, insects and animals.
Despite its toxicity, Jatropha plant is not pest and disease resistant. The major pests and
diseases affecting Jatropha are: 1) the leaf miner Stomphastis thraustica, 2) the leaf and stem
miner Pempelia morosalis, and 3) the shield-backed bug Calidea panaethiopica, which can cause
flower and fruit abortion. Damage from these pests particularly during the second year after
the plantations and before later receding is dangerous [6].

To get sufficient oil from this plant, protection from different diseases is essential. In this respect
study of disease dynamics of Jatropha plant can be done with the help of an eco-epidemiological
mathematical model for controlling and/or minimizing diseases. There are very few information
available on the eco-epidemiological mathematical model for the study of pest and disease dy-
namics to save Jatropha curcas plant from different pests. Mathematical models for pest control
have been proposed and studied by several researchers [7, 8]. They have studied the effect of
environmental fluctuations on a sterile insect release method. Bhattacharya and Bhattacharya
[9] have designed and analysed a mathematical model under sterile insect population and pes-
ticide. Pest management models through control strategies have been designed and analysed
by many researchers mathematically oftentimes[10, 11, 12].

Vegetable oil from Jatropha plant is the most viable source for the production of biodiesel. It
is significant to point out that the biodiesel from Jatropha plant has the requisite potential of
providing a promising and commercially viable alternative to diesel oil since it has desirable
physicochemical and performance characteristics comparable to diesel. It is utmost important
to protect the crop from pest in order to obtain uninterupted supply of Jatropha fruits which
is the key raw material for Jatropha seeds.

Oil which is extracted from the seeds of Jatropha curcas plant is converted to biodiesel by
transesterification reaction with the help of chemical or biological catalyst. This transesterifica-
tion reaction depends on some reaction conditions such as temperature, catalyst concentration,
speed of stirrer, molar ratios of oil and alcohol. To get maximum conversion, certain major phys-
ical and chemical property of the reaction system should be maintained properly [13], [14], [15].
Mathematical modeling can be helpful and its implementation in reality would be beneficial in
this regard. It was found that in the production of biodiesel from Jatropha oil by transesteri-
fication, the high FFA in the Jatropha oil can react with the catalyst (KOH) to produce soap
[4], [16]. This reaction causes lower yield of biodiesel, washing difficulties and purity of biodiesel.

Thus, the main objectives of this article are two fold. Initially we formulate an Eco-epidemiological
mathematical model for studying the Jatropha curcas plant pest management for controlling
and/or minimizing damages of the crop and successively to formulate a mathematical model to
optimize the production of biodiesel from Jatropha oil with chemical catalysts by controlling
reaction parameters. We determine the optimal control condition with the help of simple math-
ematical technique and discuss the relevant analysis with respect to the specified time interval,
by varying control factors to maximize the biodiesel production.
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2. Formulation of The Mathematical Model for Jatropha Pest Control

The model, we analyze in this paper, has four populations, viz.

(i) The plant population, J ,

(ii) The susceptible pest population, S,

(iii) The infected pest, I and

(iv) The virus, V .

The following assumptions are taken to formulate the mathematical model:

(A1) In the absence of the pest, plant population grows according to a logistic curve with
carrying capacity KJ(KJ > 0) and with an intrinsic growth rate constant RJ . Thus the rate
equation for Jatropha plant is:

dJ

dT
= RJJ(1− J

KJ
).

(1)

Now, Jatropha plant gets infected with pest thereby causing considerable crop reduction. Let λ
be the per capita effective contact rate with pest. Hence, the rate of change in plant population
is given by the following equation:

dJ

dT
= RJJ(1− J

KJ
)− λSV.

(2)

(A2) The infected individuals do not reproduce due to resource limitations. However, it con-
tributes with S to population growth with carrying capacity KS . In absence of virus (NPV),
the intrinsic growth rate of the susceptible pest population cab be described in logistic fashion
[17]. Let, RJ be the intrinsic birth rate and λ be the effective per capita contact rate of pest
with viruses. Also pest consumes Jatropha plant, so the reproduction rate of pest is enhanced.
Let, β1 be the rate increase of reproduction of susceptible pest. Hence the differential equation
of the susceptible pest is given by:

dS

dT
= RSS(1− S + I

KS
) + β1JS − λSV.

(A3) The infected class of pest is removed by lysis before having the possibility of reproducing.
Let ξ1 be the rate of mortality of infected pest and hence the growth rate of infected pest is
given by the following equation:

dI

dT
= λSV − ξ1I.

(A4) Let κ be the rate of production of virus per pest from lysis which called virus replication
parameter. Now, µV be the rate of mortality of virus. Also there are free virus in this environ-
ment which are reproduced constantly and we consider πv be the constant rate of reproduction
of free virus. Then the rate of change of virus is given by the following differential equation:

dV

dT
= πv + κξ1I − µV V.
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Figure 1. Trajectory portrait of model system (3) with parameter value as
in Table 1 and κ = 0.01.

noindent Based on the above assumptions (A1) - (A4), we can further formulate the
following mathematical model:

dJ

dT
= RJJ(1− J

KJ
)− β1JS,

dS

dT
= RSS(1− S + I

KS
) + β1JS − λSV,

dI

dT
= λSV − ξ1I,

dV

dT
= πv + κξ1I − µV V, (3)

with initial conditions as J(0) = J0, S(0) = S0, I(0) = I0 and V (0) = V0.

3. The Mathematical Model for Biodiesel Production from Jatropha Oil

Biodiesel can be produced by the transesterification of triglycerides and methanol in the pres-
ence of an alkaline catalyst such as potassium hydroxide (KOH). The reaction consists of
three steps and reversible reactions, where triglycerides (TG) is converted to diglycerides (DG),
diglycerides (DG) to monoglycerides (MG) and finally monoglycerides (MG) to glycerol. The
reaction steps are given below by schematic diagram:

TG+M
k1


k2
DG+ E,

DG+M
k3


k4
MG+ E,

MG+M
k5


k6
G+ E.

(4)
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At each reaction step, one molecule of methyl ester is produced for each molecule of methanol
consumed [18], [19].

It is shown above that the alcoholysis kinetic reaction scheme consists of three reversible reac-
tions. Beside, there are also FFA and BD saponification reactions. It is shown below that the
saponification kinetic reaction scheme consists of mainly three irreversible reactions [20] as:

FFA+OH
k7→A+W,

E +OH
k8→A+M. (5)

We denote the concentrations of triglycerides, diglycerides, monoglycerides, biodiesel (methyl
ester), methanol(alcohol) and glycerol by xT , xD, xM , xE , xA and xG respectively. Also, concen-
tration of catalyst, fatty acid, soap and water are denoted by xH , xF , xP and xW respectively.
Using the above assumption and considering the law of mass action, we get the following dif-
ferential equations to characterize the stepwise reactions,

dxT
dt

= −k1xTxA + k2xDxE ,

dxD
dt

= k1xTxA − k2xDxE − k3xDxA + k4xMxE ,

dxM
dt

= −k5xMxA + k6xGxE + k3xDxA − k4xMxE ,

dxA
dt

= −k1xTxA + k2xDxE − k3xDxA + k4xMxE − k5xMxA + k6xGxE + k8xExH ,

dxE
dt

= k1xTxA − k2xDxE + k3xDxA − k4xMxE + k5xMxA − k6xGxE − k8xExH ,

dxG
dt

= k5xMxA − k6xGxE ,

dxF
dt

= −k7xFxH ,

dxH
dt

= −k7xFxH − k8xExH ,

dxP
dt

= k7xFxH + k8xExH ,

dxW
dt

= k7xFxH , (6)

with the initial conditions:

xT (0) = xT0
, xD(0) = 0, xM (0) = 0, xA(0) = xA0

, xE(0) = 0,

xG(0) = 0, xF (0) = 0, xH(0) = xH0
, xP (0) = 0and xW (0) = 0. (7)

Here ki, (i=1, 2,...,8) are reaction rate constants. Again, the reaction constant, ki, is expressed
by the following equation:

ki = aie
−bi
T .

T is the reaction temperature in Kelvin scale (K), ai is the frequency factor, and

bi =
Eai
R

.

in which Eai is the activation energy for each component and R is the universal gas constant.
The values of ai and bi are given in Table 2.
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4. Mathematical Analysis of Model System (3)

4.1. Dimensionless form of the model (3)

To reduce the number of parameters and for the simplicity of analytical calculations we take
the following dimensionless form of the system (3). Taking dimensionless time t= T

λKS
and using

the transformations j = J
KJ

, s = S
KS

, i = I
KS

and v = V
KS

, we have the dimensionless form of
the model given by

dj

dt
= aj(1− j)− βjs,

ds

dt
= bs(1− (s+ i)) + αjs− sv,

di

dt
= sv − ξi,

dv

dt
= v0 + κξi− µv, (8)

Where a = RJ

λKS
, β = β1

λ , b = RS

λKS
, α = β1KJ

λKS
, ξ = ξ1

λKS
, v0 = πv

λK2
S

, µ = µV

λKS
.

4.2. Positivity and Boundedness of the system

We make an obvious assumption that all parameter used in the model are positive. The initial
condition are given by,

j(0) = j0, s(0) = s0, i(0) = i0, v(0) = v0,

with j0 > 0, s0 > 0, i0 > 0 and v0 > 0. (9)

Now we prove the positivity and boundedness of the system by following theorem and lemma.

Theorem 4.1. Each component of the system (8) with initial conditions (9) remains positive for
all t > 0.

Proof. Let (j(t), s(t), i(t), v(t)) be any solution of the system (8). Now, it is clear that
j(t) > 0 for all t > 0.
and

ds

dt
= bs(1− (s+ i)) + αjs− sv ≥ −sv.

Hence,

s ≥ s0e
∫ t
0
(v(t))dt > 0, since

∫ t

0

(v(t))dt <∞ for all t > 0. (10)

Similarly, it can prove that

i ≥ i0e−ξt > 0, for all t > 0 and v ≥ v0e−µt > 0 for all t > 0. (11)

�

Lemma 4.2. Define the function H1(t) = αj(t) + βs(t); t ∈ [0,∞). Then for all t > 0, H1(t) ≤
M1. where, M1 = α(a+α)2

4a + β(b+β)2

4a +H(j(0), s(0))e−t. Hence, j(t) and s(t) are bounded.

Proof. Let (j(t), s(t), i(t), v(t)) be any solution of the system (8). Here H1(t) = αj(t) +
βs(t).
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Therefore,

dH1

dt
= α

dj

dt
+ β

ds

dt
= αaj(1− j)− αβjs+ βbs(1− (s+ i)) + αβjs− βsv
≤ αaj(1− j) + βbs(1− s)

≤ αaj(1 +
α

a
− j) + βbs(1 +

β

b
− s)−H1.

Hence,
dH1

dt
+H1 ≤ αaj(1 +

α

a
− j) + βbs(1 +

β

b
− s),

which implies that

H1(j(t), s(t)) ≤ α(a+ α)2

4a
+
β(b+ β)2

4a
+H(j(0), s(0))e−t = M1.

�

Lemma 4.3. Define the function H2(t) = s(t) + i(t), t ∈ [0,∞). There exist two real number M2

and M3 such that s(t) ≤ M2 and j(t) ≤ M3 and we have, for all t > 0, H2(t) ≤ M4. Where
M4 = b+αM3

b +H2(s(0), i(0))e−bM2t. Then i(t) bounded.

Proof. Let (j(t), s(t), i(t), v(t)) be any solution of the system (8). Since j(t) and s(t) are
bounded, there exist two real number M2 and M3 such that s(t) ≤ M2 and j(t) ≤ M3 Since,
H2(t) = s(t) + i(t). We have,

dH2

dt
=

ds

dt
+
di

dt
= bs(1− (s+ i)) + αjs− sv + sv − ξi
≤ bM2(1− (s+ i)) + αM2M3

≤ bM2 − bM2H2 + αM2M3,

which implies,
dH2

dt
+ bM2H2 ≤ bM2 + αM2M3.

Hence,

H2(s(t), i(t)) ≤ b+ αM3

b
+H2(s(0), i(0))e−bM2t = M4.

�

Lemma 4.4. Let H3(t) = v(t), t ∈ [0,∞). there exists a real number M5, s.t i(t) ≤ M5. Then

for all t > 0, H3(t) ≤M6, where M6 = v0+κξM5

µ +H3(v0)e−µt. Hence v(t) is bounded.

Proof. Let (j(t), s(t), i(t), v(t)) be any solution of the system (8). Since i(t) is bounded,
there exists a real number M5, such that i(t) ≤M5, since H3(t) = v(t). We have,

dH3

dt
=

dv

dt
= v0 + κξi− µv ≤ v0 + κξM5 − µH3,

which implies dH3

dt + µH3 ≤ v0 + κξM5. Hence,

H3(v(t)) ≤ v0 + κξM5

µ
+H3(v0)e−µt = M6.

�

Theorem 4.5. : All solution of the system (8) that start in R4
+ are uniformly bounded.

The proof follows directly from Lemma 1, Lemma 2 and Lemma 3.
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Figure 2. Phase portrait of Healthy plant (J(t)), Healthy pest (S(t)) and
Virus (V(t)) with parameter value as in Table 1 and κ = 0.01.

4.3. Equilibria and Stability

In this sub-section we find the different equilibrium point of the dimensionless system (8) and
analyze the stability of this system around these points. The above system (equation 8) has
four equilibrium points, viz.

(a) The axial equilibrium equilibrium point E0(0, 0, 0, v0µ ),

(b) Pest free equilibrium point E1(1, 0, 0, v0µ ),

(c) Virus free equilibrium point E2(1− β
a , 1, 0, 0) and

(d) The interior equilibrium point E∗(j∗, s∗, i∗, v∗).

where,

j∗ = 1− β
a

µξi∗

κξi∗+v0
,

s∗ = µξi∗

κξi∗+v0
,

v∗ = κξi∗+v0
µ and i∗ is the positive root of the following equation:

q1i
∗2 + q2i

∗ + q3 = 0, where,

q1 = µabκξ + aκ2ξ2

q2 = µ2ξ(ab+ αβ) + v0abµ− µaκξ(b+ α) + aκ2ξ2

q3 = av20 − µαav0 − µabv0. (12)

For positivity of j∗ implies that i∗ < av0
βµξ−aκξ . Also for positivity of E2 we must have a > β.

Now, the following cases may arise.

Imhotep Proc.



Vol. 3 (2016) Renewable energy biodiesel 103

Case(I): If µ = v0
α+b , then the coefficient q3 vanishes and other coefficients are positive, which

implies that i∗ = 0 and consequently s∗ = 1, v∗ = 0 and j∗ = 1 − β
a i.e susceptible pest

population is maximum and growth of Jatropha plant will be minimum.

Case(II): If µ > v0
α+b , then the coefficient q3 is negative. Also, the coefficient q1 is always positive

then for any real value of q2, by Descartes’ rule of sign, it can be said that equation (12) has
exactly one positive solution i.e unique interior equilibrium E∗ exists.

Case(III): Finally if, µ < v0
α+b , then the coefficient q3 is positive. Also, the coefficient q1 is

always positive. Now, q2 > 0 if

(µ− p1)(µ− p2) > 0 (13)

where,

p1 =
aκξ(b+ α)− abv0 + [(aκξ(b+ α)− abv0)2 − 8κξ2v0a(ab+ αβ)]

1
2

2ξ(ab+ αβ)
,

p2 =
aκξ(b+ α)− abv0 − [(aκξ(b+ α)− abv0)2 − 8κξ2v0a(ab+ αβ)]

1
2

2ξ(ab+ αβ)
. (14)

For real and positive value of µ we must have

κξ(b+ α)− abv0 > [(aκξ(b+ α)− abv0)2 − 8κξ2v0a(ab+ αβ)]
1
2 ,

and (κ− p3)(κ− p4) > 0. (15)

Here,

p3 =
8ξ2v0a(ab+ αβ) + 2a2bξ(bv0 + α) + [A2 − 4a4b2v20ξ

2(b+ α)2]
1
2

2a2ξ2(b+ α)2
,

p4 =
8ξ2v0a(ab+ αβ) + 2a2bξ(bv0 + α)− [A2 − 4a4b2v20ξ

2(b+ α)2]
1
2

2a2ξ2(b+ α)2
, (16)

where, A = (8ξ2v0a(ab+ αβ) + 2a2bξ(bv0 + α)),
For real and positive value of κ we must have the following conditions,

A2 > 4a4b2v20ξ
2(b+ α)2 and

A > [A2 − 4a4b2v20ξ
2(b+ α)2]

1
2 .

Also, condition (13) and (15) hold if µ > p1 and κ > p3. In this case E∗ dose not exist. But

when p1 <
v0
α+b i.e when κ > v0ξ(ab+αβ)+2abv0(α+b)

2aξ(α+b)(2−(α+b)) , the flowing subcases may arise,

Subcase(I): When p1 < µ < v0
α+b , then all coefficient qi(i = 1, 2, 3) of the equation 12 are posi-

tive. This implies that E∗ does not exit.

Subcase(II: When p2 < µ < p1, then the coefficient q2 is negative and other coefficient q1 and
q2 are positive. So by Descartes’ rule of sign the equation 12 has at least one positive root. Thus
at least one positive equilibrium E∗ exists.

Subcase(III): For 0 < µ < p2, then all coefficient qi(i = 1, 2, 3) of the equation 12 are positive.
Here E∗ does not exit in that case.

Proposition 4.6. The vanishing equilibrium point E0 is always an unstable equilibrium point. The
system is is locally asymptotically stable around the pest free equilibrium point E1 if, µ < v0

α+b

and the system is unstable around this point if, µ > v0
α+b . Finally the point critically stable if,

µ = v0
α+b .
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Proof. The Jacobian matrix of the system at vanishing equilibrium point E0(0, 0, 0, v0µ )

is given by:

J(0, 0, 0,
v0
µ

) =


a 0 0 0
0 b− v0

µ 0 0

0 v0
µ −ξ 0

0 0 κξ −µ

 .
Note that the above Jacobian matrix has at least on positive eigenvalue. Hence vanishing
equilibrium point is unstable. The Jacobian matrix of the system at pest-free equilibrium point
E1(1, 0, 0, v0µ ) is given by:

J(0, 0, 0,
v0
µ

) =


−a −β 0 0
0 b+ α− v0

µ 0 0

0 v0
µ −ξ 0

0 0 κξ −µ

 .
Which gives the following characteristic equation:

(λ+ a)(λ+
v0
µ
− (b+ α))(λ+ ξ)(λ+ µ) = 0. (17)

Here, three eigenvalues are always real and negative and other eigenvalue are given by,

λ+
v0
µ
− (b+ α) = 0. (18)

Three cases arise here,
Case(I): When µ < v0

α+b then the eigenvalue is negative thus E1 is stable.

Case(II): When µ > v0
α+b then the eigenvalue is positive thus E1 is unstable.

Case(III): When µ = v0
α+b then the eigenvalue is zero. In this case the system is critically stable

at E1.

�

Proposition 4.7. The virus free equilibrium point E2 is locally asymptotically stable under κ < µ
. Whenever κ = µ, the system enter into saddle-node bifurcation around this equilibrium point.
Lastly, for κ > µ, virus free equilibrium point E2 is unstable.

Proof. The Jacobian matrix of the system at virus free equilibrium point E2(1−βa , 1, 0, 0)
is given by:

J(1− β

a
, 1, 0, 0) =


β − a beta2

a − β 0 0

α α(1− β
a )− b −b −1

0 0 −ξ 1
0 0 κξ −µ

 .
The characteristic equation is given by:

(λ2 + d1λ+ d2)(λ2 + d3λ+ d4) = 0, (19)

where,

d1 = µ+ ξ, d2 = ξ(µ− κ)

d3 = a+ b+
αβ

a
− (α+ β)

d4 = (a− β)(b+
2αβ

a
− α).

Now, under the conditions: a + b + αβ
a > α + β, a > β and b + 2αβa > α the following three

cases are arise:
Case(I): For κ < µ all eigenvalue are negative, hence the virus free equilibrium point is stable.
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Figure 3. Trajectory portrait of model system (3) with κ = 1 and other
parameters value as given in Table 1.
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Figure 4. Phase portrait of Healthy plant (J(t)), Healthy pest (S(t)) and
Virus (V(t)) with parameter value as in Table 1 and κ = 1.

Case(II): For κ = µ then one eigenvalue is zero and other three eigenvalue are negative hence
the system enter into saddle-node bifurcation at E2.

Case(III): For κ > µ then at least one eigenvalue is positive. Hence, the virus free equilibrium
point E2 is unstable in this case.

�

4.4. Stability of Interior Equilibrium

The Jacobian matrix of the system at interior equilibrium point E∗(j∗, s∗, i∗, v∗) is given by:
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J(j∗, s∗, i∗, v∗) =


s11 s12 s13 s14
s21 s22 s23 s24
s31 s32 s33 s34
s41 s42 s43 s44

 ,
where,

s11 = a− 2aj∗ − βs∗, s12 = −βj∗, s21 = αs∗,

s22 = b− 2bs∗ + αj∗ − v∗, s23 = −bv∗,
s24 = −s∗, s32 = v∗, s33 = −ξ, s34 = s∗,

s43 = κξ, s44 = −µ. (20)

The characteristic equation of JE∗ is

ρ4 + σ1ρ
3 + σ2ρ

2 + σ3ρ+ σ4 = 0, (21)

where,

σ1 = −(s11 + s22 + s33 + s44),

σ2 = s11s22 + s11s33 + s11s44 + s22s33 + s22s44 +

s33s44 − s34s43 − s23s32 − s12s21,
σ3 = −(s11s22s33 + s11s22s44 + s11s33s44

+s22s33s44) + s34s43(s11 + s22)

+s23s32(s11 + s44) + s12s21(s33 + s44)− s24s32s43,
σ4 = s12s21s34s43. (22)

Then by Routh-Hurwitz criterion it follows that the interior equilibrium point locally asymp-
totically stable if

(i) σ1 > 0, σ4 > 0,

(ii) σ1σ2 − σ3 > 0 and

(iii) σ3(σ1σ2 − σ3)− σ2
1σ4 > 0.

5. Mathematical Study of the System (6)

5.1. Boundedness of the System

In this section we show that the solution of the system is bounded using the following theorem.

Theorem 5.1. All solution of the system that start in R10
+ are uniformly bounded.

Proof. We define the function W (t) as follows:

W (t) = xT (t) + xD(t) + xM (t) + xA(t) + xE(t) + xG(t) + xF (t) + xH(t) + xP (t) + xW (t)

Therefore,

dW

dt
=
dxT
dt

+
dxD
dt

+
dxM
dt

+
dxA
dt

+
dxE
dt

+
dxG
dt

+
dxF
dt

+
dxH
dt

+
dxP
dt

+
dxW
dt

.

From system (2) we have, dW
dt = 0.

Hence, W (t) = k, where k is a positive constant (since xT (0), xA(0), xH(0) are positive and
others components are zero. )
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Figure 5. System dynamics for varying κ and parameter are as given in Table 1.

From the above analysis we have W (t) < c for some c > k. Thus solution of the system (6) is
bounded.

�

5.2. The Optimal Control Problem for Biodiesel Production

Here we have introduced three control parameters u1(t), u2(t) to reduce soap formation and
catalyst loss. They are introduced in the first stage, second stage of saponification reaction
respectively. The corresponding reaction mechanism is given by the following schematic diagram

FFA+OH
k7,u1→ S +W,

BD +OH
k8,u2→ S +AL.

We apply the control inputs u1(t) and u2(t) to reduce the side reaction of biodiesel production
to get more biodiesel in each step of transesterification reaction as quick as possible. Here, u1, u2
satisfy 0 ≤ ui(t) ≤ 1 [21]. Also ui(t) = 1 represents the maximal use of control and ui(t) = 0,
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which signifies no control. Thus, introducing control input parameters, the system (6) becomes,

dxT
dt

= −k1xTxA + k2xDxE ,

dxD
dt

= k1xTxA − k2xDxE − k3xDxA + k4xMxE ,

dxM
dt

= −k5xMxA + k6xGxE + k3xDxA − k4xMxE ,

dxA
dt

= −k1xTxA + k2xDxE − k3xDxA + k4xMxE − k5xMxA + k6xGxE + u2k8xExH ,

dxE
dt

= k1xTxA − k2xDxE + k3xDxA − k4xMxE + k5xMxA − k6xGxE − u2k8xExH ,

dxG
dt

= k5xMxA − k6xGxE ,

dxF
dt

= −u1k7xFxH ,

dxH
dt

= −u1k7xFxH − u2k8xExH ,

dxP
dt

= u1k7xFxH + u2k8xExH ,

dxW
dt

= u1k7xFxH , (23)

with the initial conditions:

xT (0) = xT0
, xD(0) = 0, xM (0) = 0, xA(0) = xA0

, xE(0) = 0,

xG(0) = 0, xF (0) = xF0
, xH(0) = 0, xP (0) = 0and xW (0) = 0. (24)

The above system can be written as:

dxi
dt

= fi(xi, ki, u1, u2, t), i = 1, 2, ...10. (25)

5.2.1. The Optimal system. Here we want to maximize bio-diesel xE and minimize soap xP , so
that we define the objective cost function for the minimization problem as,

J(u1, u2) =

∫ tf

ti

[Pu21(t) +Qu22(t)−Rx2E(t) + Tx2P (t)]dt, (26)

The parameters P, Q, R and T are the positive weight constants on the benefit of the cost
of production. The benefit is based on the minimization of cost together with maximization of
biodiesel concentration. Our aim is to find out the optimal control pair u∗=(u∗1, u

∗
2) such that

J(u∗1, u
∗
2) = min (J(u1, u2) : (u1, u2) ∈ U),

where,
U = U1 × U2 and
U1 = {u1(t) : u1 is measurable and 0 ≤ u1 ≤ 1, t ∈ [ti, tf ]}
U2 = {u2(t) : u2 is measurable and 0 ≤ u2 ≤ 1, t ∈ [ti, tf ]}.

Here we use ”Pontryagin Minimum Principle” [22] to find u∗(t).
We define the Hamiltonian as follows:

H = [Pu21(t) +Qu22(t)−Rx2B(t) + Tx2S ] +
∑

ξifi, i = 1, 2, ..., 10, (27)

where, ξ1, ξ2, ..., ξ10 are adjoint variables. According to Pontryagin, adjoint variables satisfy the
following equations,

dξi
dt

= −∂H
∂xi

, i = 1, 2, ..., 10, (28)
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where x1 = xT , x2 = xD, · · · , x10 = xW .
This gives,

dξ1
dt

= ξ1k1xA − ξ2k1xA + ξ4k1xA − ξ5k1xA
dξ2
dt

= −ξ1k2xE + ξ2k2xE + ξ2k3xA − ξ3k3xA + ξ4k3xA + ξ5k2xE − ξ5k3xA
dξ3
dt

= −ξ2k4xE + ξ3k5xA + ξ3k4xE − ξ4k4xE + ξ4k5xA + ξ4k4xE − ξ4k5xA
−ξ6k5xA,

dξ4
dt

= ξ1k1xT − ξ2k1xT + ξ3k5xM − ξ3k3xD + ξ4k1xT + ξ4k3xD + ξ4k5xM

−ξ5k1xT − ξ5k3xD − ξ5k5xM − ξ6k5xM ,
dξ5
dt

= 2RxE − ξ1k2xD + ξ2k2xD − ξ2k4xM − ξ3k6xG + ξ3k4xM − ξ4k2xD − ξ4k4xM
−ξ4k6xG − u2ξ4k8xH + ξ5k2xD + ξ5k4xM + ξ5k6xG + u2ξ5k8xH + ξ6k6xG

+u2ξ5k8xH − u2ξ9k8xH
dξ6
dt

= −ξ3k6xE − ξ4k6xE + ξ5k6xE + ξ6k6xE

dξ7
dt

= u1ξ7k7xH + u1ξ8k7xH − u1ξ9k7xH − u1ξ10k7xH
dξ8
dt

= u1ξ7k7xF + u1ξ8k7xF − u1ξ9k7xF − u1ξ10k7xF − u2ξ8k8xE − u2ξ9k8xE
dξ9
dt

= −2TxP ,

dξ10
dt

= 0, (29)

along with the transversality conditions ξi(tf ) = 0 for i = 1, 2, ..., 10.
According to Pontryagin Minimum Principle [22], the unconstrained optimal control variables
u∗1 and u∗2 satisfy,

∂H

∂u∗i
= 0, i = 1, 2. (30)

Thus from (27) and (30), we have

u∗1(t) =
k7xFxH(ξ7 − ξ9 + ξ8 − ξ10)

2P
, (31)

u∗2(t) =
k8xExH(ξ5 − ξ4 + ξ8 − ξ9)

2Q
. (32)

Due to the boundedness of the standard control we get,

u∗1(t) = max(0, min(1,
k7xFxH(ξ7 − ξ9 + ξ8 − ξ10)

2P
)), (33)

In a similar way, we have the compact form of u∗2(t) as:

u∗2(t) = max(0, min(1,
k8xExH(ξ5 − ξ4 + ξ8 − ξ9)

2Q
)). (34)

Thus, we have the following theorem.

Theorem 5.2. If the objective cost function J(u∗1, u
∗
2) over U is minimum for the optimal control

u∗ corresponding to the interior equilibrium (x∗i , i=1, 2, ...,10), then there exist adjoint variables
ξ1, ξ2, ..., ξ10 which satisfy the the system of equations (29).
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Table 1. Values of parameters used in numerical calculation for system (3)
[23, 24].

Parameters Definition Values (Unit)
RJ The maximum rate of plantation 0.05 Day−1

KJ The plant density 500 M−2

λ The infection rate 0.01 Vector−1 Day−1

β The rete of interaction 0.05 Day−1

ξ The rate of plant loss 0.1 Day−1

RS The growth rate of pest 0.05 Day−1

βV The acquisition rate 0.01 Plant−1 Day−1

KS The pest carrying capacity 10000 Day−1

Table 2. Values of parameters used in numerical calculation for model system
(6) [19].

Parameters Value

a1 3.92e7
a2 5.77e5
a3 5.88e12
a4 0.098e10
a5 5.35e3
a6 2.15e4
a7 3.92e7
a8 5.77e5

Parameters Value

b1 6614.83
b2 4997.98
b3 9993.96
b4 7366.64
b5 3231.18
b6 4824.87
b7 6614.83
b8 4997.98

6. Numerical Simulation

6.1. Numerical Simulation for Model System (3)

The dynamics of the model system are analyzed using numerical methods in MATLAB. The
numerical results of the system (3) are obtained to verify the analytical predictions obtained in
the previous sections.

Figure 1 shows that the model variables J(t), S(t), I(t) and V(t) oscillate initially before the
system moves toward its stable region as time increases. Length of oscillation is decreasing as
the time goes on. Figure 2 is the phase portrait of healthy plant, healthy pest and infected
pest which shows the asymptotic stability of the system around the interior equilibrium E∗ for
κ = 0.01 and other parameters value as given in Table 1.

The changes in the behavior of the dynamics of the system for different values of parameter
β is seen in Figure 3. Numerically, we have shown that system (3) is stable asymptotically for
κ < 0.3 (approx) and when κ cross the value (0.3), the system becomes unstable and for κ =1
gives a limit cycle in (J-S-I) plane which is indicated by Figure 4.

Figure 5 depicts the bifurcation diagram of four populations to observe a perfect behavior of
the system for variation of the parameter κ (the rate of interaction between Healthy Plant and
Pest). We observe that when κ passes through the value 0.35 (approx.), the interior equilibrium
E∗ bifurcates towards a periodic solution.
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Figure 6. Effect of temperature on BD production and soap formation taking
parameter as in Table 2 (without control).
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Figure 7. Effect of molar ratio on biodiesel production (left panel) and for-
mation of soap (right panel) (without control).

Figure 8. Effect of catalyst on BD production (right panel) and formation of
soap (left panel) without control.

6.2. Numerical Simulation for Model System (6)

We solved the model equations (6) numerically to understand the behaviour of the transester-
ification reaction. The kinetics of the system has been analyzed using numerical methods in
the presence and absence of the control parameters. Here, temperature, molar ratio, catalyst
concentration are employed for understanding their effects in biodiesel production process.

Figure 6 shows the effect of the temperature on conversion of Jatropha curcas oil using 6:1
methanol to oil molar ratio with KOH concentration 1%wt of oil. It is also cleared that with
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Figure 9. Control profiles are plotted as a function of time for biodiesel pro-
duction process.

an increasing reaction temperature at or above 50oC the initial reaction conversion from oil
to biodiesel taking 1 hour reaction time, the ultimate biodiesel conversion appears to be lower
compared to that of using a lower temperature. The probable reason for this is that the saponi-
fication of biodiesel and FFA by the alkali catalysts is much faster than the transesterification
reaction at temperature above 50oC. In other words, higher temperature accelerates the side
saponification reaction. Thus operating the reactor under the conditions of the experiments at
temperatures higher than 50oC was not economical.

Molar ratio between alcohol and oil influences the yield of biodiesel production. Biodiesel con-
centration increases with the increasing ethanol/oil molar ratio. Alcohol to oil molar ratio is
varied from 6:1 to 12:1 and the results are shown in figure 7. It is seen that with the increasing
in the methanol to oil molar ratio, the percentage molar conversion increased rapidly with time
but after 1 hour the ultimate percentage mole conversion is lower compared to that of using
lower methanol to oil molar ratio.

Catalyst concentration has a significant effect on alkali-catalyzed methanolysis. We vary cata-
lyst concentration to see the effects of catalyst concentration on the methyl ester (xE) and soap
(xP ) which is shown in Figure 8. Biodiesel yield is decreased and soap is increased as the cata-
lyst concentrations increases. Although, the catalyst concentration of 1.5% w/w of oil provided
a lower biodiesel yield than that of 1% w/w of oil for all reaction times, such a concentration
should be avoided. Moreover, the methyl ester layer obtained from using this catalyst concen-
tration has to be washed with hot distilled water several times in the water washing step. So
there is a possibility of losing some biodiesel product to emulsion formation. For these reasons,
1% w/w of oil is considered to be the optimum catalyst concentration.

Figure 9 illustrates how the control policies act on the system with respect to time. From this
figure we see that the control approach on each step of saponification reaction we obtain soap and
if we apply control on it, then the rate of reaction monotonically decreases and soap formation
reduces. We also see from this figure that the concentration of biodiesel is also enhanced. Thus,
initially higher control is needed for maximum biodiesel production but after 20 minutes of the
reaction, comparatively less control is needed.

In figure 10, concentration profiles of biodiesel is plotted in two different avenues which are
mentioned as without control and at the optimal control level. From this figure, it is observed
that how the control induced system give more production of biodiesel with respect to time. Our
result shows that at 60 minute of reaction time, the concentration of biodiesel at optimal level
reaches its maximum value as 2.98 mol/L, while the maximum concentration is 2.795 mol/L if
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Figure 10. Left panel: Comparison between two cases: (1) BD concentra-
tion with optimal control, and (2) BD concentration without control; right
panel:Comparison between two cases: (1) soap formation with optimal control,
and (2) soap formation without control.

there is no control policy (like change of temperature, molar ratio, catalyst etc.) present on the
reaction. In this way we can get 6.62% more biodiesel after 60 min of reaction time.

7. Discussion

In this article, we desire to observe the effects of biopesticide for controlling the pest of Jatropha
curcas plant . We have explored the local stability of the positive interior equilibrium point E∗

and also local Hopf-bifurcation. we have shown how the dynamics changes with the increase in
the value of the parameter κ of the system. The dynamical behavior of the system is investi-
gated from the point of view of stability and persistence. The model shows that infection can
be sustained only above a threshold force of infection resulted by virus replication parameter κ.
On increasing the value of κ, the endemic equilibrium bifurcates towards a periodic solution. A
numerical simulation is then presented under a different choice of virus replication parameter’
i.e. κ.

We have also presented another mathematical model of transesterification reaction for bio-diesel
production. We have shown that the reaction depends significantly on molar ratio, catalyst con-
centration and temperature. Applying mathematical control approach we see that control on
saponification reaction is essential in the transesterification reaction to increase bio-diesel pro-
duction. By implying control approach on each step of saponification reaction, we have seen
that administering the control parameters (such as temperature, catalyst concentration etc.)
saponification can be reduced as well as production of bio-diesel can be increased.

8. Conclusion

The effectiveness of viral infection as a biological pest control in Jatropha plantation is dis-
cussed by mathematical modelling. It is certainly possible to eradicate pest population through
release of viral pesticide. Finally, our analytical and numerical analysis indicate an important
role of viral infection in pest control in Jatropha curcas plantation management. Thus, Appli-
cation of biological pesticide for the integrated pest management policy with release of viral
pesticide as biological control is the most favorable one [25]. In case of biodiesel production,
fatty acid level in Jatropha curcas oil should be reduced as less as possible before catalytic
transesterification of oil to avoid saponification problem. Also, catalyst concentration should be
maintained properly. Numerical simulation offers a better understanding of optimal control for
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the maximum production of biodiesel. Thus, this article provides an idea to protect Jatropha
plant from different pests and gives the conditions for getting maximum biodiesel production
from Jatropha oil.
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