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Abstract: Suppose R is a completely primary finite ring in which the product
of any two zero divisors lies in the Galois (coefficient) subring. We construct R
and find a generalized characterization of its regular elements.
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1. Introduction

Unless otherwise stated, J(R) shall denote the Jacobson radical of a completely
primary finite ring R. We shall denote the coefficient (Galois) subring of R by
R'. The set of all the regular elements in R shall be denoted by V(R). The rest
of the notations shall be adopted from [1].

An element z € R is called regular if there exists y € R such that z = z2y.
The element y is called a von Neumann inverse of z, see e.g [2]. It is well known
that in any local ring, a regular element is either a unit or zero. Further details
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on the classes of completely primary finite rings considered in this work may
be obtained in [3] and [4].

2. The Construction

Let R be the Galois ring of the form GR(p™,p"). For each i = 1,...,h, let
u; € J(R), such that U is an h- dimensional R -module generated by {1, ..., up, }
so that R = R @ U is an additive group. On this group, define multiplication
by the following relations:

(i) If n = 2, then wu; = payj, ui = uiu; = uu? = 0,u;r C = (r')%iy
(i) If n > 3, then

/

- ! L 0w = (),

P s = 0, uiuy = prag; + p" T By, uf = ui T uy = wiu
where r’,ozij e R, Bij € R /pR', 1 < i,j < h and o; is the automorphism
associated with u;. Further, let pu; = w;u; = 0, when u; € U.

From the given multiplication in R, we notice that 7“,, s € Rl,%, A\ € Fy
are elements of R, then

’I"—I—Z)\UZ 8+Z)\UZ—TS+Pnlz§U +pR)

1,7=1
h

30107+ pR )i + (s +pR )7 us,
=1

where 7,5 € R, \ij,vi € Fy, &5 € R//pR/. It is easy to verify that the given
multiplication turns R into a ring with identity (1,0, ...,0). We also notice that
p*~ ! e (J(R))? when charR = charR = p", n > 2. Specifically, p € (J(R))?
when n = 2.

3. Preliminary Results

Lemma 1. The ring described by the construction is commutative iff
o; =idp for eachi=1,... h.

Proof. Tt is evident U
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Remark: If n = 2, then the construction yields rings satisfying the proper-
ties
J(R)=pR &U

(J(R)? = pR
(J(R))® = (0).
On the other hand, if n > 3, then J(R) = pR @& U

Now, consider a commutative ring R from the class of rings described by the
construction, we notice that

h
R=R o) Ru
1=1

h
J(R)=pR &> Ru,.
=1
So
h
1+ J(R)=1+pR &) Ru,
=1

Further, V(R) = R* U {0} = (R*/1+ J(R)).(1+ J(R)) U{0} =< a > .(1+
J(R))U{0} =< a> x(1+J(R))U{0} = Zp 1 x (1+ J(R))U{0}. It therefore
suffices to determine the structure of 1 + J(R).

Proposition 1. For each prime integer p, 14+pR’ is a subgroup of 1+.J(R).

Proposition 2. For each prime integer p, 1 +pR @ Ruy is a subgroup of
1+ J(R).

Proposition 3. Foreach 1 < j < h, 1+ 2?21 @R/uj is a subgroup of
1+ J(R).

Since the two sided annihilator ann(J(R)) = p" "' R/, we state the following
result

Proposition 4. 1+ ann(J(R)) <1+ pR <1+ J(R).
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Proof. It suffices to prove that 1 + ann(J(R)) < 1+ pR’. Clearly 1 +
ann(J(R)) = 14+p" 1R ¥n > 2. Now, forr,s' € R, let 14+p" 1y 14p"~1s €
1+ ann(J(R)). Then

A+p" o)A +p ) = (" ) =)
=1 —|—p"71(r/ — s/) €l+ann(J(R)). O

Proposition 5. Let p = 2. Then the 2- group 1+ J(R) is a direct product
of the subgroups 1 +pR & R'uy by 1+ Z?:l ®R u;, with h > 2.

Proposition 6. Let p # 2. The p— group 1+ J(R) is a direct product of
the subgroups 1+ pR by 1 + Z?:1 ®R u;.

Proposition 7. Let U be a finitely generated R — module. If U is gener-
ated by {ui,...,up}, then {uy,us + ua, ...,up—1 + up} also generates U.

Proof. If U is a finitely generated R — module, then there exist aq, ..., ap €
R, such that every u € U can be expressed in the form u = Z?:l a;u;. But
Z?:l U = (Oq — Q9 + ... + (—1)h+1ah)u1 + (042 — 3+ ... + (—l)hah)(ul +
ug) + ... + (p—1 — o) (up—2 +up—1) + ap(up—1 + up). Since all the coefficients
a1 —ag+ ..+ (=)o an —az+ ...+ (=1)"ap, ...,an_1 — ap, and ay, belong
to R/, it follows that {uy,u; + ug,...,up—1 + up} generates U. ]

Proposition 8. Let R be a commutative finite ring from the class of finite
rings described by the construction. If U is generated by {uy,...,up}, then it is
also generated by {ui,u1 + ug,...,u1 + ug + ... +up}.

4. Main Results

Proposition 9. Let R be a commutative finite ring from the class of finite
rings described by the construction. If h > 1 and charR = p?, then

Zy x (Zy)"tifp=2

1+J(R)”:{ 7% (7 ity 2

Proof. Let Ai,...,\, € R with A\; = 1 such that j,..., A\, € R /pR form
a basis for R /pR regarded as a vector space over its prime subfield GF(p).
Since the two cases do not overlap, we treat them in turn.

Case (i). p = 2. We notice that, for every v = 1,...,r and u; € J(R) —
(J(R))?,

(1+ Mu)? =1+202 + 20,1
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=14 2)% since 2 € (J(R))?*and 2u; = 0.
Now,

(T4 222)(1+ Aug) = 14202 + (A, + 200w
=1+ 2)\2 + \uy ,since 2 € (J(R))?and 2u; = 0.

But then,

(14222 + Xu)(1+ M)
=1+2222 + 20\ + X))y

=1 ,since 2 € (J(R))%*and 2u; = 0.

(J

Also, for each u; € J(R) — (J(R))?,1 <
2(22)2)+2\, (u; +uip1)=1, since (J(R))3
as 2 € (J(R))?.
So, for each v =1,..,rand 1 <i < h—1, (1+ \u)* =1, (1 + "7 A (us +
ui+1))2 =1.

For positive integers a, , i witha, <4, 6;, <2 (1<i<h-1,1<v <
), we notice that the equation

<h—1, (14 X + Muigr)? =1+
= (0) so that 23 = 0,2u; = 2u;41 = 0,

h—1 r

H{ + )™ b T T + A (wi 4 wisn)? = {13

i=1v=1

will imply ap, =4 and 3;, = 2,1 <7 < h — 1. If we set
T, ={(1 4+ u)"|a=1,..,4},

Siv = {1+ A (ui +uis)™ | B = 1,2}
we see that T}, S;, are all cyclic subgroups of the group 1+ J(R) and they are
of the orders indicated in their definition. Since

h—1 r

H [< 14 M > [T I 1< 14 A (ui + wigq) >|= 20407
v=1 i=1v=1

and the intersection of any pair of the cyclic subgroups gives the identity group,
the product of the hr subgroups T, S;y, 1 < i < h — 1 is direct. Therefore,
their product exhausts the group 1+ J(R).

Case (ii). pisodd. If v =1,...,7r and u; € J(R) — (J(R))},1 <i<h -1,

p(p—1)

5 (PA)? + ... + (AP

(14+p\)P =14+p°\, +
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— 1,since charR = p>.
Also,

h
1+ Aug)? 1—#2)\uZ _,_:(1+Z)\Vui)p:1

For positive integers oy, , B, with o, <p, By <p (1 <i<h,1 <v <r), we
notice that the equation

H{ +pA a”}HH{l—i—Z)\u )Py = {1}

i=1v=1
will imply ap, = B, = p, 1 <7 < h. If we set

T, ={(14+p\)" | a=1,..,p},

i
Si={(1+>_ Nuy)’ | B =1,...p}
j=1
we see that T}, S;, are all cyclic subgroups of the group 1+ J(R) and they are
of the orders indicated in their definition. Since

H\<1+p)\ >|. HH]<1—|—Z)\U >|= plhtir

i=1lv=1

and the intersection of any pair of the cyclic subgroups gives the identity group,
the product of the (h + 1)r subgroups T, S;,, 1 < i < h is direct. Therefore,
their product exhausts the group 1+ J(R). O

Proposition 10. Let R be a commutative finite ring from the class of
finite rings given by the construction. If h > 1,7 > 1 and charR = p>, then

Z; % 7 x (Z3)" it p=2
IR = { Zy < (Z) it p # 2

Proof. Let Ay,..., A\ € R with \; = 1 such that Ay,..., A\, € R /pR form a
basis for R’ / pR’ regarded as a vector space over its prime subfield GF (p). We
treat the two cases in turn.

Case (i). p = 2. We notice that for every v = 1,...,r and u; € J(R) —
(J(R))?,

(—14+4)0)2=1-23), +21)\2
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=1, since charR = 23.
Also

(1+Mu)? =1+2222 + 20,y
=1+22)\% since 2u; = 0.

But then,

(1+2220)% =1+2°22 +2°A]

= 1, since charR = 2°.

It is also easy to see that, foreach v = 1,...,7, 1 <i < h—1, (14, (u;+uis1))? =
1.

For positive integers vy, , B, , ki wWith a, <2, 8, <4, Ky <2,(1 <i <
h—1,1 < v <r), we notice that the equation

T r h—1 r
TTE1+ )3 TTHA + A} H LT + A (ui + wiga))™> = {1}

will imply ap, =2 and 8, =4, ki = 2,1 <1 < h— 1. If we set
H,={(-1+4\)% | a=1,2},
T, = {1+ hu)’ | B=1,..,4},
Siv = {(1 4+ Mo (wi + uir1)™ | Ky = 1,2}

we see that H,, T,, S;, are all cyclic subgroups of the group 1+ J(R) and they
are of the orders indicated in their definition. Since

r r h—1 r
IT 1< —14+4n > I 1< 14 x0m > [T TT 1< 14200 (it i) >|= 202
v=1 v=1 i=1v=1

and the intersection of any pair of the cyclic subgroups gives the identity group,
the product of the (h + 1)r subgroups H,, T,, Siy, 1 < i < h — 1 is direct.
Therefore, their product exhausts the group 1+ J(R).

Case (ii). p is odd. Here, we notice that

2 h
T+pA)? =11+ Au) = 1+ > A = o= (1+ Y Au)P = 1.
i=1 i=1
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Now, for positive integers o, , B;, with o, <p?, B, <p,(1<i<h1<v<
), we notice that the equation

r h r 7
[Tia+pr) T TTHO + ZAuug')ﬁi”} = {1}

i=1v=1

will imply a,, = p?, Biy =p for 1 <v <r and 1 < i < h. The rest of the proof
is similar to Case (ii) in the previous proposition.

Proposition 11. Let R be a commutative finite ring from the class of
finite rings described by the construction. If h > 1, r = 1 and charR = p",
n >4, then

Zo % Ziy X Zign—2 x (Zo)" " Vifp=2

Zyn—1 X (Zp)if p #2

1+ J(R) = {

Proof. Case (i). p= 2. Consider the element 1+2t+u;, wheret = n—4,n >

4, then o(1 + 2t +uy) = 2”2, The elements —1+2"! and —1 4 2"~2 + u; are

each of order 2. Also, the elements 1 4+ uy + ug, 1+ uo + ug, ..., 1 + up_1 + up

are each of order 2. Now, the mentioned elements generate cyclic subgroups of

1+ J(R). Since |< 1+2t +uj >| . |[< —1+2"1 > . |< =1 +2"2 4y >|

.H?ZQ |< 1+uj_1 +u; >=2""""1 and the intersection of any pair of the

cyclic subgroups gives the identity group, < 1+ 2t +u; > x < —1 4271 >

X< —142"2 4y >x <14u +up > XX <1+up_1 +up > is a direct
product.

Case (ii). p # 2 Here, the element 1+ p is of order p"~! while the elements
14 ug, 1+ Z?:l Wiy ooy 1T+ Z?:l u; are each of order p. The given elements
generate cyclic subgroups of the group 1+ J(R). Since

h

L
l<l4p> J]I< 14D u>=p"",
=1 =1

and the intersection of any pair of the cyclic subgroups gives the identity group,
<l4p>x<ldu>x<1+37 4> xx < 1+Z?:1ui > is a direct
product. ]

Proposition 12. Let R be a commutative finite ring from the class of
finite rings described by the construction. If h > 1, r > 1 and charR = p*,
then

Zo X Zip x Zy x Zh ' x ZL < (Zp)h T if p =2

1+J(R):{ Zys x (ZD) if p £ 2
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Let Aq,..., )\, € R with \; = 1 such that Aj,..., \, € R//pR/ form a basis
for R’ / pR’ regarded as a vector space over its prime subfield GF (p). We treat
the two cases in turn.

Case (1). p= 2. Clearly,
(=1 4+250)2 =1, (=1 4+ 22X + Mup)? = 1, (=1 + 2201 + A2) + Aoup)? =1,

(14+22(A 1+ A2) 4+ Aour)? = (1 4+22(A1 +23) + A2 + )ug)? = ... =
(14+22A + X)) 4+ Do+ o F A )u)? =1, (142X, + Aup)® =1,
(T+MNuj_1+Muj)2 =1, 2<j<h.

For positive integers «, 8, kK, Vs, Ty, wip With a < 2, 8 <2, k < 4, v, < 2,
Ty <8 wipy <2,2<s<r1<r<rl<i<h-—1,wenotice that the equation
{(=1+2220) 1 {(= 14+ 2200+ M) (= 14+ 22 (A + o) + down)*}. T o { (1 +
22\ + M) + Xy M)} T 420 + Aud)™ b TE T {1+ s +

1))} = {1}, willimply a« = =2, k =4, vy, = 2, 7, = 8, w;, = 2 for every
v=1,..,r,v=2,..,randi=1,....h — 1. If we set

E={(-1+2°X\)%| a=1,2},

F={(-1422\ + 2w’ | 8 =1,2},
G={(—14+2>\ +X2) + dowr)" | k = 1,...,4},

H, = (1 + 22()\1 + )\V) + Z)\LUI)’YV ‘ T = 172}7
1=2

K, ={(14+2\, + X u)™ |1 <7, <8},
Liy = {(1 + Ao (ui +ui41))"}

we see that E, F, G, Ha, ..., Hy, K, ..., Ky, L1y, ..., L(,_1), are all cyclic subgroups
of the group 1+ J(R) and they are of the orders indicated in their definition.
Since

‘< -1+ 8\ >’ . ‘< —1+4X + \ug >‘ . ‘< —1 —1—8()\1 +)\2) + Xouq >‘ .

r v r
ITI<t+a0u+20) + > A > [T I< 120 + hu >
v=2 =2 v=2

h—1 r

H H |< 1+ )\,,(Ui + Ui+1) >|: 2(h+1)r,
i=1v=1
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and the intersection of any pair of the cyclic subgroups gives the identity group,
the product of the 1+ (h + 1)r subgroups

E,F,G,Hy,....Hy, Ko, ..., Ky, L1y, . Lip—1y,

is direct. Therefore, their product exhausts 1+ J(R).

Case (ii). p # 2. Here the proof is similar to that of Case (ii) in the previous
proposition, with some slight modification. ]

Proposition 13. Let R be a commutative finite ring from the class of
finite rings described by the construction. If h > 1, r > 1 and charR = p",
n > 5, then

1+ J(R) = { Z i Gyt AT =
pnfl i p 7& 2
Proof. Let A,..., \r € R with \; = 1 such that Ay,..., \, € R//pRl form a
basis for R’ / pR’ regarded as a vector space over its prime subfield GF (p). We
treat the two cases in turn.
Case (1). p= 2. Clearly,

(1427 A2 =1, (=1 4+ 2" TA + 27 0)2 = 1, (142X + Mug)? - =1,
I+ 37, u)? ™ = 1,1+ 40 + Au)? " = Ly =2, (14 A(u; +
ui11))?2 = 1, 1 < i < h — 1 For positive integers «, 3, Ky, Vv, Tw, Wiy With
a<2, <22k, <2, <270 7, <277 W, 2,1 < v <l <
v <11 <i<h-—1 we notice that the equation {(—1 4+ 2"~1X\{)*}.{(1 +
2\ +A1u1)5h}-{(—1+2"’1 Yoo M) T o { (4 300y A ) T+ 4, +
Aun) ™ Y T T L (A (g i)} = {1}, will imply o = 2, 8 = 272
k=279 =2"37,=2"2 w, =2forevery v =2,..,rand i =1,....h — 1.
If we set

E={(-1+2""\)"|a=1,2}
F={1+2\+Nw)’|p=1,.,2""7%}

G = {(—1 + 2n—1()\1 + )\2))’i ‘ K= 1,2}

v
HV = (1 + Z)\Lul)’yy | ’YV = 17 .”’2”*3}’
=2

K, ={(1+4\, + \u)™ | 1,...,2" 2},
L;, = {(1 + )\,/(ui + ui+1))wi ‘ w; = 1,2}
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we see that £, F, G, Hy, ..., H;, Ko, ..., Ky, L1y, ..., L1, are all cyclic subgroups
of the group 1+ J(R) and they are of the orders indicated in their definition.

Since

r
‘< —1 _|_2n—1)\1 >‘ . ’< 142N + Aug >‘ . H ’< —1 _|_2n—1()\1 +)\2) >’ .
v=2

T 14 T
ITI<t+> xuw > J] 1< 1+40 + A >
v=2 =2 v=2

h—1 r

H H |< 1+ )\,,(ui + Uprl) >|: 2(h+n—1)r’

=1 v=1
and the intersection of any pair of the cyclic subgroups gives the identity
group, the product of the 1+ (h + 1)r subgroups E, F,G, Hs, ..., H,, K», ..., K,
Ly, s L(p—1y, is direct. Therefore, their product exhausts 1+ J(R).

Case (ii). p # 2. Here the proof is similar to that of Case (ii) in the previous

proposition, with some slight modification. ]

We now state the main result.

Theorem 1. The regular elements of the rings described by the construc-

tion is given as follows:
i) If char R = p?, then

vir)y = | o1 X Zix (Z5)"tu{o}ifp=2
| textbfZy g x Zj ¥ (Z;)h U{0}ifp#2

i) If char R = p3, then

Zyr 1 x Zy x Zi x (Z5)" =1 U{0} if p =2
Zyr 1 % Zy < (Zp) U{0} if p # 2

iii) If charR = p*, then

Zor 1 X Zo X Zo x Zy x (Zo)""tu{0}ifp=2andr=1
V(R) =~ Zor 1 X Ziog X Zp x Zy x Zh ' x Z5t x (Zp)h Tt u {0}
ifp=2andr>1
Zyr 1 % Zy X (Zy)" U {0} if p # 2
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iv) If charR = p™, n > 5, then

Zor 1 X Zio X Ziy X Zon—2 x (Zo) P U{0}ifp=2andr =1
V(R) = Zor 1 % Zy % Zy % Zogn—2 x Z0, 1y x Z0 L, x (Zp)1u{o}
ifp=2andr>1

Zyr 1 X Z oy X (Zp)h U0} if p # 2
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